987 resultados para Motoneuron Pool
Resumo:
Tendon reflexes have been often used in studies of the human nervous system in health and disease. They have been investigated either in response to single tendon taps or to long duration vibrations. Tendon reflexes are described here in response to a high frequency vibration burst (3 cycles of a 100 Hz sine wave) applied to the Achilles tendon of standing subjects, either in quiet stance or during a forward leaning posture. The electromyogram from the soleus muscle usually showed three components separated by 10 ms which were interpreted as being three reflexes, each reflex induced by each of the three cycles in a burst. This result indicates that soleus tendon reflexes can respond in fast succession in a phasic manner when a brief high frequency vibration is applied to the Achilles tendon. This occurs in spite of possible depression of the la to motoneuron synapses and the long after hyperpolarization of the motoneurons. An interpretation of the results is that motoneurons from different subsets of the motoneuron pool respond to different cycles of the sinusoidal vibratory burst. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
1. The present study investigated the effects of lengthening and shortening actions on IT-reflex amplitude. H-reflexes were evoked in the soleus (SOL) and medial gastroenemius (MG) of human subject, during passive isometric, lengthening and shortening actions performed at angular velocities of 0, +/-2, +/-5 and +/- 15 deg s(-1). 2. H-reflex amplitude, in froth SOL and MG were significantly depressed during passive lengthening actions and facilitated during passive shortening actions, when compared with the isometric R-reflex amplitude. 3. Four experiments were performed in which the latencies front the onset of movement to delivery of the stimulus were altered. Passive H-reflex modulation during lengthening actions was found tee begin at latencies of less than 60 ms suggesting that this inhibition was due to peripheral and/or spinal mechanisms. 4. It is postulated that, the H-reflex modulation seen in the present study is related to the tunic discharge of muscle spindle afferents and the consequent effects of transmission within the la pathway. Inhibition of the H-reflex at less than 60 ms after the onset of muscle lengthening may he attributed to several mechanisms, which cannot be distinguished using the current protocol. These may include the inability to evoke volleys in la fibres that are refractory following muscle spindle discharge during; rapid muscle lengthening, a reduced probability of transmitter release front the presynaptic terminal (homosynaptic post.-activation depression) and presynaptic inhibition of la afferents from plantar flexor agonists. Short latency facilitation of the H-reflex may be attributed to temporal summation of excitatory postsynaptic potentials arising from muscle spindle afferents during rapid muscle lengthening. At longer latencies, presynaptic inhibition of Ia afferents cannot be excluded as a potential inhibitory mechanism.
Resumo:
The influence of respiratory activity of the abdominal muscles on their reaction time in a postural task was evaluated. The electromyographic (EMG) onsets of the abdominal muscles and deltoid were evaluated in response to shoulder flexion initiated by a visual stimulus occurring at random throughout the respiratory cycle. Increased activity of the abdominal muscles was produced by inspiratory loading, forced expiration below functional residual capacity, and a static glottis-closed expulsive maneuver. During quiet breathing, the latency between activation of the abdominal muscles and deltoid was not influenced by the respiratory cycle. When respiratory activity of the abdominal muscles increased, the EMG onset of transversus abdominis and internal oblique, relative to deltoid, was significantly earlier for movements beginning in expiration, compared with inspiration [by 97-107 ms (P < 0.01) and 64-90 ms (P < 0.01), respectively]. However, the onset of transversus abdominis EMG was delayed by 31-54 ms (P < 0.01) when movement was performed during a static expulsive effort, compared with quiet respiration. Thus changes occur in early anticipatory contraction of transversus abdominis during respiratory tasks but they cannot be explained simply by existing activation of the motoneuron pool.
Resumo:
The aim of this study was to characterize the effect of a 5 km running time trial on the neuromuscular properties of the plantar flexors. Eleven well-trained triathletes performed a series of neuromuscular tests before and immediately after the run on a 200 m indoor track. Muscle activation (twitch interpolation) and normalized EMG activity were assessed during maximal voluntary contraction (MVC) of plantar flexors. Maximal soleus H-reflexes and M-waves were evoked at rest (i.e. H (MAX) and M (MAX), respectively) and during MVC (i.e. H (SUP) and M (SUP), respectively). MVC significantly declined (-27%; P < 0.001) after the run, due to decrease in muscle activation (-8%; P < 0.05) and M (MAX)-normalized EMG activity (-13%; P < 0.05). Significant reductions in M-wave amplitudes (M (MAX): -13% and M (SUP): -16%; P < 0.05) as well as H (MAX)/M (MAX) (-37%; P < 0.01) and H (SUP)/M (SUP) (-25%; P < 0.05) ratios occurred with fatigue. Following exercise, the single twitch was characterized by lower peak torque (-16%; P < 0.001) as well as shorter contraction (-19%; P < 0.001) and half-relaxation (-24%; P < 0.001) times. In conclusion, the reduction in plantar flexors strength induced by a 5 km running time trial is caused by peripheral adjustments, which are attributable to a failure of the neuromuscular transmission and excitation-contraction coupling. Fatigue also decreased the magnitude of efferent motor outflow from spinal motor neurons to the plantar flexors and part of this suboptimal neural drive is the result of an inhibition of soleus motoneuron pool reflex excitability.
Resumo:
The aim of this study was to characterize the effect of a 5 km running time trial on the neuromuscular properties of the plantar flexors. Eleven well-trained triathletes performed a series of neuromuscular tests before and immediately after the run on a 200 m indoor track. Muscle activation (twitch interpolation) and normalized EMG activity were assessed during maximal voluntary contraction (MVC) of plantar flexors. Maximal soleus H-reflexes and M-waves were evoked at rest (i.e. H (MAX) and M (MAX), respectively) and during MVC (i.e. H (SUP) and M (SUP), respectively). MVC significantly declined (-27%; P < 0.001) after the run, due to decrease in muscle activation (-8%; P < 0.05) and M (MAX)-normalized EMG activity (-13%; P < 0.05). Significant reductions in M-wave amplitudes (M (MAX): -13% and M (SUP): -16%; P < 0.05) as well as H (MAX)/M (MAX) (-37%; P < 0.01) and H (SUP)/M (SUP) (-25%; P < 0.05) ratios occurred with fatigue. Following exercise, the single twitch was characterized by lower peak torque (-16%; P < 0.001) as well as shorter contraction (-19%; P < 0.001) and half-relaxation (-24%; P < 0.001) times. In conclusion, the reduction in plantar flexors strength induced by a 5 km running time trial is caused by peripheral adjustments, which are attributable to a failure of the neuromuscular transmission and excitation-contraction coupling. Fatigue also decreased the magnitude of efferent motor outflow from spinal motor neurons to the plantar flexors and part of this suboptimal neural drive is the result of an inhibition of soleus motoneuron pool reflex excitability.
Resumo:
This study examines the excitability and recruitment of spinal motoneurons in human sleep. The main objective was to assess whether supraspinal inhibition affects the different subpopulations of the compound spinal motoneuron pool in the same way or rather in a selective fashion in the various sleep stages. To this end, we studied F-conduction velocities (FCV) and F-tacheodispersion alongside F-amplitudes and F-persistence in 22 healthy subjects in sleep stages N2, N3 (slow-wave sleep), REM and in wakefulness. Stimuli were delivered on the ulnar nerve, and F-waves were recorded from the first dorsal interosseus muscle. Repeated sets of stimuli were stored to obtain at least 15 F-waves for each state of vigilance. F-tacheodispersion was calculated based on FCVs using the modified Kimura formula. Confirming the only previous study, excitability of spinal motoneurons was generally decreased in all sleep stages compared with wakefulness as indicated by significantly reduced F-persistence and F-amplitudes. More importantly, F-tacheodispersion showed a narrowed range of FCV in all sleep stages, most prominently in REM. In non-REM, this narrowed range was associated with a shift towards significantly decreased maximal FCV and mean FCV as well as with a trend towards lower minimal FCV. In REM, the lowering of mean FCV was even more pronounced, but contrary to non-REM sleep without a shift of minimal and maximal FCV. Variations in F-tacheodispersion between sleep stages suggest that different supraspinal inhibitory neuronal circuits acting on the spinal motoneuron pool may contribute to muscle hypotonia in human non-REM sleep and to atonia in REM sleep.
Models of passive and active dendrite motoneuron pools and their differences in muscle force control
Resumo:
Motoneuron (MN) dendrites may be changed from a passive to an active state by increasing the levels of spinal cord neuromodulators, which activate persistent inward currents (PICs). These exert a powerful influence on MN behavior and modify the motor control both in normal and pathological conditions. Motoneuronal PICs are believed to induce nonlinear phenomena such as the genesis of extra torque and torque hysteresis in response to percutaneous electrical stimulation or tendon vibration in humans. An existing large-scale neuromuscular simulator was expanded to include MN models that have a capability to change their dynamic behaviors depending on the neuromodulation level. The simulation results indicated that the variability (standard deviation) of a maintained force depended on the level of neuromodulatory activity. A force with lower variability was obtained when the motoneuronal network was under a strong influence of PICs, suggesting a functional role in postural and precision tasks. In an additional set of simulations when PICs were active in the dendrites of the MN models, the results successfully reproduced experimental results reported from humans. Extra torque was evoked by the self-sustained discharge of spinal MNs, whereas differences in recruitment and de-recruitment levels of the MNs were the main reason behind torque and electromyogram (EMG) hysteresis. Finally, simulations were also used to study the influence of inhibitory inputs on a MN pool that was under the effect of PICs. The results showed that inhibition was of great importance in the production of a phasic force, requiring a reduced co-contraction of agonist and antagonist muscles. These results show the richness of functionally relevant behaviors that can arise from a MN pool under the action of PICs.
Resumo:
OBJECTIVES: This study assessed the bone density gain and its relationship with the periodontal clinical parameters in a case series of a regenerative therapy procedure. MATERIAL AND METHODS: Using a split-mouth study design, 10 pairs of infrabony defects from 15 patients were treated with a pool of bovine bone morphogenetic proteins associated with collagen membrane (test sites) or collagen membrane only (control sites). The periodontal healing was clinically and radiographically monitored for six months. Standardized pre-surgical and 6-month postoperative radiographs were digitized for digital subtraction analysis, which showed relative bone density gain in both groups of 0.034 ± 0.423 and 0.105 ± 0.423 in the test and control group, respectively (p>0.05). RESULTS: As regards the area size of bone density change, the influence of the therapy was detected in 2.5 mm² in the test group and 2 mm² in the control group (p>0.05). Additionally, no correlation was observed between the favorable clinical results and the bone density gain measured by digital subtraction radiography (p>0.05). CONCLUSIONS: The findings of this study suggest that the clinical benefit of the regenerative therapy observed did not come with significant bone density gains. Long-term evaluation may lead to a different conclusions.
Resumo:
This study investigated the effect of a pool of peptides, isolated from venom of Crotalus durissus terrificus (South American rattlesnake) on glucose concentration in C57BL/6 mice fed on a high-fat diet for 6 weeks. The pool of peptides (molecular mass around of 10 kDa) was obtained using a MidJet apparatus with a cartridge of 10 KDa. The peptide pool was injected intraperitoneally in mice in a single dose (0.5 mg/animal) or multiple doses (0.2 mg/dose). After predetermined times (30, 60, 90 and 120 min) post injections, venous blood samples were collected for enzymatic measurement of serum glucose using a commercial glucose kit (glucose oxidase method). High-fat fed mice showed an increase in blood glucose concentration, in comparison with mice fed on the chow diet. Thirty minutes after a single dose of the peptide pool, high-fat fed animals showed a significant decrease (similar to 47%) in glycemia. However, the glucose level increased again at 60 and 120 min. Conversely, after multiple injections of the pool of peptides administered every 30 min, the blood glucose concentration in the high-fat mice was significantly decreased (similar to 37%) and remained at low levels until 120 min. These results suggest that the tested pool of peptides from Crotalus durissus terrificus contained a peptide (or peptides) with a beneficial role on glucose-lowering action of high-fat fed mice.
Resumo:
View back towards house from deck. with Iwan (right) and filter room (left).
Resumo:
As seen from The Nest above
Resumo:
View towards house from pool deck. Iwan on right and stone clad filter room on left.
Resumo:
View of pool and deck with Iwan (left) and filter room (right).
Resumo:
As seen from adjacent garden area.
Resumo:
As seen from adjacent garden area.