949 resultados para Moco cotton
Resumo:
Brazil is one of the major centers of diversity for polyploid cotton plants; these plants belong to the genus Gossypium, which has three known species: G. hirsutum, G. barbadense and G. mustelinum. The Northeast is the only region where the three species occur, the last group being endemic. Northeast s cotton plants can be important sources of variability for genetic breeding. It is believed that great part of local diversity is being lost, due to economic, political, cultural and agricultural problems. In an attempt to mitigate this loss and delineate conservation strategies it is necessary to know how the species are found where they occur. The objective was to characterize and determine how plants are maintained in situ in the states of Maranhão, Piauí, Ceará, Rio Grande do Norte and Paraíba at the beginning of the XXI century. The in situ characterization of G. hirsutum and G. barbadense was conducted through structured interviews with the cotton plants owners and through the analysis of the environment. The data were collected during expeditions undertaken between the years 2004 to 2005. Twenty-two plants were collected in the state of Paraíba, forty-four in the state of Rio Grande do Norte, one hundred and forty-six in the state of Ceará, forty in the state of Maranhão and ninety-one plants in the state of Piauí. All plants collected in the states of Paraíba and Rio Grande do Norte belonged to moco type. Moco cotton plants also predominated in the other states, representing 92%, 62% and 78% of plants collected in Ceará, Piauí and Maranhão, respectively. The other cotton plants collected belong to the species G. barbadense. The cotton plants were found in situ as dooryard plants, roads side, feral populations, cultivation or local varieties. Great part were dooryard plants (45.2%), being major in Piauí and Maranhão. Cultivation predominated in Ceará; in Rio Grande do Norte feral populations were the most frequent and, in Paraíba, local varieties. The maintenance of moco plants is related, mainly, to the phytotherapic domestic use (20.9%) and to confection of lamp wicks (29.7%). Few inhabitants in Paraíba, Rio Grande do Norte, Piauí and none in Maranhão used harvest the plants, storage the seeds or gin; however, in Ceará, 40.5% of owners affirmed that they harvested and commercialized the fiber. It was found that the maintenance of species is dependent of the fragile cultural habits of local inhabitants, therefore the maintenance in situ is not a suitable way to conservation of genetic resources. The efforts must be directed to the continuity of collections, maintenance and characterization ex situ
Resumo:
An automated gas sampling methodology has been used to estimate nitrous oxide (N2O) emissions from heavy black clay soil in northern Australia where split applications of urea were applied to furrow irrigated cotton. Nitrous oxide emissions from the beds were 643 g N/ha over the 188 day measurement period (after planting), whilst the N2O emissions from the furrows were significantly higher at 967 g N/ha. The DNDC model was used to develop a full season simulation of N2O and N2 emissions. Seasonal N2O emissions were equivalent to 0.83% of applied N, with total gaseous N losses (excluding NH3) estimated to be 16% of the applied N.
Resumo:
Cotton is one of the most important irrigated crops in subtropical Australia. In recent years, cotton production has been severely affected by the worst drought in recorded history, with the 2007–08 growing season recording the lowest average cotton yield in 30 years. The use of a crop simulation model to simulate the long-term temporal distribution of cotton yields under different levels of irrigation and the marginal value for each unit of water applied is important in determining the economic feasibility of current irrigation practices. The objectives of this study were to: (i) evaluate the CROPGRO-Cotton simulation model for studying crop growth under deficit irrigation scenarios across ten locations in New South Wales (NSW) and Queensland (Qld); (ii) evaluate agronomic and economic responses to water inputs across the ten locations; and (iii) determine the economically optimal irrigation level. The CROPGRO-Cotton simulation model was evaluated using 2 years of experimental data collected at Kingsthorpe, Qld. The model was further evaluated using data from nine locations between northern NSW and southern Qld. Long-term simulations were based on the prevalent furrowirrigation practice of refilling the soil profile when the plant -available soil water content is<50%. The model closely estimated lint yield for all locations evaluated. Our results showed that the amounts of water needed to maximise profit and maximise yield are different, which has economic and environmental implications. Irrigation needed to maximise profits varied with both agronomic and economic factors, which can be quite variable with season and location. Therefore, better tools and information that consider the agronomic and economic implications of irrigation decisions need to be developed and made available to growers.
Resumo:
Irrigation is known to stimulate soil microbial carbon and nitrogen turnover and potentially the emissions of nitrous oxide (N2O) and carbon dioxide (CO2). We conducted a study to evaluate the effect of three different irrigation intensities on soil N2O and CO2 fluxes and to determine if irrigation management can be used to mitigate N2O emissions from irrigated cotton on black vertisols in South-Eastern Queensland, Australia. Fluxes were measured over the entire 2009/2010 cotton growing season with a fully automated chamber system that measured emissions on a sub-daily basis. Irrigation intensity had a significant effect on CO2 emission. More frequent irrigation stimulated soil respiration and seasonal CO2 fluxes ranged from 2.7 to 4.1 Mg-C ha−1 for the treatments with the lowest and highest irrigation frequency, respectively. N2O emission happened episodic with highest emissions when heavy rainfall or irrigation coincided with elevated soil mineral N levels and seasonal emissions ranged from 0.80 to 1.07 kg N2O-N ha−1 for the different treatments. Emission factors (EF = proportion of N fertilizer emitted as N2O) over the cotton cropping season, uncorrected for background emissions, ranged from 0.40 to 0.53 % of total N applied for the different treatments. There was no significant effect of the different irrigation treatments on soil N2O fluxes because highest emission happened in all treatments following heavy rainfall caused by a series of summer thunderstorms which overrode the effect of the irrigation treatment. However, higher irrigation intensity increased the cotton yield and therefore reduced the N2O intensity (N2O emission per lint yield) of this cropping system. Our data suggest that there is only limited scope to reduce absolute N2O emissions by different irrigation intensities in irrigated cotton systems with summer dominated rainfall. However, the significant impact of the irrigation treatments on the N2O intensity clearly shows that irrigation can easily be used to optimize the N2O intensity of such a system.
Resumo:
Cotton growing landscapes in Australia have been dominated by dual-toxin transgenic Bt varieties since 2004. The cotton crop has thus effectively become a sink for the main target pest, Helicoverpa armigera. Theory predicts that there should be strong selection on female moths to avoid laying on such plants. We assessed oviposition, collected from two cotton-growing regions, by female moths when given a choice of tobacco, cotton and cabbage. Earlier work in the 1980s and 1990s on populations from the same geographic locations indicated these hosts were on average ranked as high, mid and low preference plants, respectively, and that host rankings had a heritable component. In the present study, we found no change in the relative ranking of hosts by females, with most eggs being laid on tobacco, then cotton and least on cabbage. As in earlier work, some females laid most eggs on cotton and aspects of oviposition behaviour had a heritable component. Certainly, cotton is not avoided as a host, and the implications of these finding for managing resistance to Bt cotton are discussed.
Resumo:
The cotton strip assay (CSA) is an established technique for measuring soil microbial activity. The technique involves burying cotton strips and measuring their tensile strength after a certain time. This gives a measure of the rotting rate, R, of the cotton strips. R is then a measure of soil microbial activity. This paper examines properties of the technique and indicates how the assay can be optimised. Humidity conditioning of the cotton strips before measuring their tensile strength reduced the within and between day variance and enabled the distribution of the tensile strength measurements to approximate normality. The test data came from a three-way factorial experiment (two soils, two temperatures, three moisture levels). The cotton strips were buried in the soil for intervals of time ranging up to 6 weeks. This enabled the rate of loss of cotton tensile strength with time to be studied under a range of conditions. An inverse cubic model accounted for greater than 90% of the total variation within each treatment combination. This offers support for summarising the decomposition process by a single parameter R. The approximate variance of the decomposition rate was estimated from a function incorporating the variance of tensile strength and the differential of the function for the rate of decomposition, R, with respect to tensile strength. This variance function has a minimum when the measured strength is approximately 2/3 that of the original strength. The estimates of R are almost unbiased and relatively robust against the cotton strips being left in the soil for more or less than the optimal time. We conclude that the rotting rate X should be measured using the inverse cubic equation, and that the cotton strips should be left in the soil until their strength has been reduced to about 2/3.
Resumo:
Nitrous oxide emissions were monitored at three sites over a 2-year period in irrigated cotton fields in Khorezm, Uzbekistan, a region located in the arid deserts of the Aral Sea Basin. The fields were managed using different fertilizer management strategies and irrigation water regimes. N2O emissions varied widely between years, within 1 year throughout the vegetation season, and between the sites. The amount of irrigation water applied, the amount and type of N fertilizer used, and topsoil temperature had the greatest effect on these emissions. Very high N2O emissions of up to 3000 μg N2O-N m−2 h−1 were measured in periods following N-fertilizer application in combination with irrigation events. These “emission pulses” accounted for 80–95% of the total N2O emissions between April and September and varied from 0.9 to 6.5 kg N2O-N ha−1.. Emission factors (EF), uncorrected for background emission, ranged from 0.4% to 2.6% of total N applied, corresponding to an average EF of 1.48% of applied N fertilizer lost as N2O-N. This is in line with the default global average value of 1.25% of applied N used in calculations of N2O emissions by the Intergovernmental Panel on Climate Change. During the emission pulses, which were triggered by high soil moisture and high availability of mineral N, a clear diurnal pattern of N2O emissions was observed, driven by daily changes in topsoil temperature. For these periods, air sampling from 8:00 to 10:00 and from 18:00 to 20:00 was found to best represent the mean daily N2O flux rates. The wet topsoil conditions caused by irrigation favored the production of N2O from NO3− fertilizers, but not from NH4+ fertilizers, thus indicating that denitrification was the main process causing N2O emissions. It is therefore argued that there is scope for reducing N2O emission from irrigated cotton production; i.e. through the exclusive use of NH4+ fertilizers. Advanced application and irrigation techniques such as subsurface fertilizer application, drip irrigation and fertigation may also minimize N2O emission from this regionally dominant agro-ecosystem.
Resumo:
An increasing concern over the sustainability credentials of food and fiber crops require that farmers and their supply chain partners have access to appropriate and industry-friendly tools to be able to measure and improve the outcomes. This article focuses on one of the sustainability indicators, namely, greenhouse gas (GHG) emissions, and nine internationally accredited carbon footprint calculators were identified and compared on an outcomes basis against the same cropping data from a case study cotton farm. The purpose of this article is to identify the most “appropriate” methodology to be applied by cotton suppliers in this regard. From the analysis of the results, we subsequently propose a new integrated model as the basis for an internationally accredited carbon footprint tool for cotton and show how the model can be applied to evaluate the emission outcomes of different farming practices.
Resumo:
Yield in cultivated cotton (Gossypium spp.) is affected by the number and distribution of fibres initiated on the seed surface but, apart from simple statistical summaries, little has been done to assess this phenotype quantitatively. Here we use two types of spatial statistics to describe and quantify differences in patterning of cotton ovule fibre initials (FI). The following five different species of Gossypium were analysed: G. hirsutum L., G. barbadense L., G. arboreum, G. raimondii Ulbrich. and G. trilobum (DC.) Skovsted. Scanning electron micrographs of FIs were taken on the day of anthesis. Cell centres for fibre and epidermal cells were digitised and analysed by spatial statistics methods appropriate for marked point processes and tessellations. Results were consistent with previously published reports of fibre number and spacing. However, it was shown that the spatial distributions of FIs in all of species examined exhibit regularity, and are not completely random as previously implied. The regular arrangement indicates FIs do not appear independently of each other and we surmise there may be some form of mutual inhibition specifying fibre-initial development. It is concluded that genetic control of FIs differs from that of stomata, another well studied plant idioblast. Since spatial statistics show clear species differences in the distribution of FIs within this genus, they provide a useful method for phenotyping cotton. © CSIRO 2007.
Resumo:
The Cotton and Grain Adoption Program of the Queensland Rural Water Use Efficiency Initiative is targeting five major irrigation regions in the state with the objective to develop better irrigation water use efficiency (WUE) through the adoption of best management practices in irrigation. The major beneficiaries of the program will be industries, irrigators and local communities. The benefits will flow via two avenues: increased production and profit resulting from improved WUE and improved environmental health as a consequence of greatly reduced runoff of irrigation tailwater into rivers and streams. This in turn will reduce the risk of nutrient and pesticide contamination of waterways. As a side effect, the work is likely to contribute to an improved public image of the cotton and grain industries. In each of the five regions, WUE officers have established grower groups to assist in providing local input into the specific objectives of extension and demonstration activities. The groups also assist in developing growers' perceptions of ownership of the work. Activities are based around four on-farm demonstration sites in each region where irrigation management techniques and hardware are showcased. A key theme of the program is monitoring water use. This is applied both to on-farm storage and distribution as well as to application methods and in-field management. This paper describes the project, its activities and successes.
Resumo:
Decision-making in agriculture is carried out in an uncertain environment with farmers often seeking information to reduce risk. As a result of the extreme variability of rainfall and stream-flows in north-eastern Australia, water supplies for irrigated agriculture are a limiting factor and a source of risk. The present study examined the use of seasonal climate forecasting (SCF) when calculating planting areas for irrigated cotton in the northern Murray Darling Basin. Results show that minimising risk by adjusting plant areas in response to SCF can lead to significant gains in gross margin returns. However, how farmers respond to SCF is dependent on several other factors including irrigators’ attitude towards risk.
Resumo:
Positive nitrogenase activities ranging from 0.18 to 0.78 nmol of C2H4 cm−2 h−1 were detected on the leaf surfaces of different varieties of cotton (Gossypium hirsutum L. and G. herbaceum L.) plants. Beijerinckia sp. was observed to be the predominant nitrogen-fixing microorganism in the phyllosphere of these varieties. A higher level of phyllosphere nitrogen-fixing activity was recorded in the variety Varalaxmi despite a low C/N ratio in the leaf leachates. Leaf surfaces of the above variety possessed the largest number of hairy outgrowths (trichomes) which entrapped a majority of microbes. Immersion of plant roots in nutrient medium containing 32Pi led to the accumulation of label in the trichome-borne microorganisms, thereby indicating a possible transfer of nutrients from leaf to microbes via trichomes. Extrapolation of acetylene reduction values suggested that 1.6 to 3.2 kg of N ha−1 might be contributed by diazotrophs in the phyllosphere of the variety Varalaxmi during the entire growth period.
Resumo:
Mounting levels of insecticide resistance within Australian Helicoverpa spp. populations have resulted in the adoption of non-chemical IPM control practices such as trap cropping with chickpea, Cicer arietinum (L.). However, a new leaf blight disease affecting chickpea in Australia has the potential to limit its use as a trap crop. Therefore this paper evaluates the potential of a variety of winter-active legume crops for use as an alternative spring trap crop to chickpea as part of an effort to improve the area-wide management strategy for Helicoverpa spp. in central Queensland’s cotton production region. The densities of Helicoverpa eggs and larvae were compared over three seasons on replicated plantings of chickpea, Cicer arietinum (L.), field pea Pisum sativum (L), vetch, Vicia sativa (L.) and faba bean, Vicia faba (L.). Of these treatments, field pea was found to harbour the highest densities of eggs. A partial life table study of the fate of eggs oviposited on field pea and chickpea suggested that large proportions of the eggs laid on field pea suffered mortality due to dislodgment from the plants after oviposition. Plantings of field pea as a replacement trap crop for chickpea under commercial conditions confirmed the high level of attractiveness of this crop to ovipositing moths. The use of field pea as a trap crop as part of an areawide management programme for Helicoverpa spp. is discussed.