988 resultados para Mobility prediction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Outdoor robots such as planetary rovers must be able to navigate safely and reliably in order to successfully perform missions in remote or hostile environments. Mobility prediction is critical to achieving this goal due to the inherent control uncertainty faced by robots traversing natural terrain. We propose a novel algorithm for stochastic mobility prediction based on multi-output Gaussian process regression. Our algorithm considers the correlation between heading and distance uncertainty and provides a predictive model that can easily be exploited by motion planning algorithms. We evaluate our method experimentally and report results from over 30 trials in a Mars-analogue environment that demonstrate the effectiveness of our method and illustrate the importance of mobility prediction in navigating challenging terrain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motion planning for planetary rovers must consider control uncertainty in order to maintain the safety of the platform during navigation. Modelling such control uncertainty is difficult due to the complex interaction between the platform and its environment. In this paper, we propose a motion planning approach whereby the outcome of control actions is learned from experience and represented statistically using a Gaussian process regression model. This mobility prediction model is trained using sample executions of motion primitives on representative terrain, and predicts the future outcome of control actions on similar terrain. Using Gaussian process regression allows us to exploit its inherent measure of prediction uncertainty in planning. We integrate mobility prediction into a Markov decision process framework and use dynamic programming to construct a control policy for navigation to a goal region in a terrain map built using an on-board depth sensor. We consider both rigid terrain, consisting of uneven ground, small rocks, and non-traversable rocks, and also deformable terrain. We introduce two methods for training the mobility prediction model from either proprioceptive or exteroceptive observations, and report results from nearly 300 experimental trials using a planetary rover platform in a Mars-analogue environment. Our results validate the approach and demonstrate the value of planning under uncertainty for safe and reliable navigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Location prediction has attracted a significant amount of research effort. Being able to predict users’ movement benefits a wide range of communication systems, including location-based service/applications, mobile access control, mobile QoS provision, and resource management for mobile computation and storage management. In this demo, we present MOBaaS, which is a cloudified Mobility and Bandwidth prediction services that can be instantiated, deployed, and disposed on-demand. Mobility prediction of MOBaaS provides location predictions of a single/group user equipments (UEs) in a future moment. This information can be used for self-adaptation procedures and optimal network function configuration during run-time operations. We demonstrate an example of real-time mobility prediction service deployment running on OpenStack platform, and the potential benefits it bring to other invoking services.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Mobile Edge Computing enables the deployment of services, applications, content storage and processing in close proximity to mobile end users. This highly distributed computing environment can be used to provide ultra-low latency, precise positional awareness and agile applications, which could significantly improve user experience. In order to achieve this, it is necessary to consider next-generation paradigms such as Information-Centric Networking and Cloud Computing, integrated with the upcoming 5th Generation networking access. A cohesive end-to-end architecture is proposed, fully exploiting Information-Centric Networking together with the Mobile Follow-Me Cloud approach, for enhancing the migration of content-caches located at the edge of cloudified mobile networks. The chosen content-relocation algorithm attains content-availability improvements of up to 500 when a mobile user performs a request and compared against other existing solutions. The performed evaluation considers a realistic core-network, with functional and non-functional measurements, including the deployment of the entire system, computation and allocation/migration of resources. The achieved results reveal that the proposed architecture is beneficial not only from the users’ perspective but also from the providers point-of-view, which may be able to optimize their resources and reach significant bandwidth savings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile and wireless networks have long exploited mobility predictions, focused on predicting the future location of given users, to perform more efficient network resource management. In this paper, we present a new approach in which we provide predictions as a probability distribution of the likelihood of moving to a set of future locations. This approach provides wireless services a greater amount of knowledge and enables them to perform more effectively. We present a framework for the evaluation of this new type of predictor, and develop 2 new predictors, HEM and G-Stat. We evaluate our predictors accuracy in predicting future cells for mobile users, using two large geolocation data sets, from MDC [11], [12] and Crawdad [13]. We show that our predictors can successfully predict with as low as an average 2.2% inaccuracy in certain scenarios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’émergence de nouvelles applications et de nouveaux services (tels que les applications multimédias, la voix-sur-IP, la télévision-sur-IP, la vidéo-sur-demande, etc.) et le besoin croissant de mobilité des utilisateurs entrainent une demande de bande passante de plus en plus croissante et une difficulté dans sa gestion dans les réseaux cellulaires sans fil (WCNs), causant une dégradation de la qualité de service. Ainsi, dans cette thèse, nous nous intéressons à la gestion des ressources, plus précisément à la bande passante, dans les WCNs. Dans une première partie de la thèse, nous nous concentrons sur la prédiction de la mobilité des utilisateurs des WCNs. Dans ce contexte, nous proposons un modèle de prédiction de la mobilité, relativement précis qui permet de prédire la destination finale ou intermédiaire et, par la suite, les chemins des utilisateurs mobiles vers leur destination prédite. Ce modèle se base sur : (a) les habitudes de l’utilisateur en terme de déplacements (filtrées selon le type de jour et le moment de la journée) ; (b) le déplacement courant de l’utilisateur ; (c) la connaissance de l’utilisateur ; (d) la direction vers une destination estimée ; et (e) la structure spatiale de la zone de déplacement. Les résultats de simulation montrent que ce modèle donne une précision largement meilleure aux approches existantes. Dans la deuxième partie de cette thèse, nous nous intéressons au contrôle d’admission et à la gestion de la bande passante dans les WCNs. En effet, nous proposons une approche de gestion de la bande passante comprenant : (1) une approche d’estimation du temps de transfert intercellulaire prenant en compte la densité de la zone de déplacement en terme d’utilisateurs, les caractéristiques de mobilité des utilisateurs et les feux tricolores ; (2) une approche d’estimation de la bande passante disponible à l’avance dans les cellules prenant en compte les exigences en bande passante et la durée de vie des sessions en cours ; et (3) une approche de réservation passive de bande passante dans les cellules qui seront visitées pour les sessions en cours et de contrôle d’admission des demandes de nouvelles sessions prenant en compte la mobilité des utilisateurs et le comportement des cellules. Les résultats de simulation indiquent que cette approche réduit largement les ruptures abruptes de sessions en cours, offre un taux de refus de nouvelles demandes de connexion acceptable et un taux élevé d’utilisation de la bande passante. Dans la troisième partie de la thèse, nous nous penchons sur la principale limite de la première et deuxième parties de la thèse, à savoir l’évolutivité (selon le nombre d’utilisateurs) et proposons une plateforme qui intègre des modèles de prédiction de mobilité avec des modèles de prédiction de la bande passante disponible. En effet, dans les deux parties précédentes de la thèse, les prédictions de la mobilité sont effectuées pour chaque utilisateur. Ainsi, pour rendre notre proposition de plateforme évolutive, nous proposons des modèles de prédiction de mobilité par groupe d’utilisateurs en nous basant sur : (a) les profils des utilisateurs (c’est-à-dire leur préférence en termes de caractéristiques de route) ; (b) l’état du trafic routier et le comportement des utilisateurs ; et (c) la structure spatiale de la zone de déplacement. Les résultats de simulation montrent que la plateforme proposée améliore la performance du réseau comparée aux plateformes existantes qui proposent des modèles de prédiction de la mobilité par groupe d’utilisateurs pour la réservation de bande passante.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Long Term Evolution (LTE) represents the fourth generation (4G) technology which is capable of providing high data rates as well as support of high speed mobility. The EU FP7 Mobile Cloud Networking (MCN) project integrates the use of cloud computing concepts in LTE mobile networks in order to increase LTE's performance. In this way a shared distributed virtualized LTE mobile network is built that can optimize the utilization of virtualized computing, storage and network resources and minimize communication delays. Two important features that can be used in such a virtualized system to improve its performance are the user mobility and bandwidth prediction. This paper introduces the architecture and challenges that are associated with user mobility and bandwidth prediction approaches in virtualized LTE systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently telecommunication industry benefits from infrastructure sharing, one of the most fundamental enablers of cloud computing, leading to emergence of the Mobile Virtual Network Operator (MVNO) concept. The most momentous intents by this approach are the support of on-demand provisioning and elasticity of virtualized mobile network components, based on data traffic load. To realize it, during operation and management procedures, the virtualized services need be triggered in order to scale-up/down or scale-out/in an instance. In this paper we propose an architecture called MOBaaS (Mobility and Bandwidth Availability Prediction as a Service), comprising two algorithms in order to predict user(s) mobility and network link bandwidth availability, that can be implemented in cloud based mobile network structure and can be used as a support service by any other virtualized mobile network services. MOBaaS can provide prediction information in order to generate required triggers for on-demand deploying, provisioning, disposing of virtualized network components. This information can be used for self-adaptation procedures and optimal network function configuration during run-time operation, as well. Through the preliminary experiments with the prototype implementation on the OpenStack platform, we evaluated and confirmed the feasibility and the effectiveness of the prediction algorithms and the proposed architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an analytical calculation of break-out noise from a rectangular plenum with four flexible walls by incorporating three-dimensional effects along with the acoustical and structural wave coupling phenomena. The breakout noise from rectangular plenums is important and the coupling between acoustic waves within the plenum and structural waves in the flexible plenum walls plays a critical role in prediction of the transverse transmission loss. The first step in breakout noise prediction is to calculate the inside plenum pressure field and the normal flexible plenum wall vibration by using an impedance-mobility approach, which results in a compact matrix formulation. In the impedance-mobility compact matrix (IMCM) approach, it is presumed that the coupled response can be described in terms of finite sets of the uncoupled acoustic subsystem and the structural subsystem. The flexible walls of the plenum are modeled as an unfolded plate to calculate natural frequencies and mode shapes of the uncoupled structural subsystem. The second step is to calculate the radiated sound power from the flexible walls using Kirchhoff-Helmholtz (KH) integral formulation. Analytical results are validated with finite element and boundary element (FEM-BEM) numerical models. (C) 2010 Acoustical Society of America. DOI: 10.1121/1.3463801]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Breakout noise from HVAC ducts is important at low frequencies, and the coupling between the acoustic waves and the structural waves plays a critical role in the prediction of the transverse transmission loss. This paper describes the analytical calculation of breakout noise by incorporating three-dimensional effects along with the acoustical and structural wave coupling phenomena. The first step in the breakout noise prediction is to calculate the inside duct pressure field and the normal duct wall vibration by using the solution of the governing differential equations in terms of Green's function. The resultant equations are rearranged in terms of impedance and mobility, which results in a compact matrix formulation. The Green's function selected for the current problem is the cavity Green's function with modification of wave number in the longitudinal direction in order to incorporate the terminal impedance. The second step is to calculate the radiated sound power from the compliant duct walls by means of an ``equivalent unfolded plate'' model. The transverse transmission loss from the duct walls is calculated using the ratio of the incident power due to surface source inside the duct to the acoustic power radiated from the compliant duct walls. Analytical results are validated with the FE-BE numerical models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of geothermal energy as a source for electricity generation and district heating has increased over recent decades. Arsenic can be a significant constituent of the geothermal fluids pumped to the surface during power generation. Dissolved As exists in different oxidation states, mainly as As(III) and As(V), and the charge of individual species varies with pH. Basaltic glass is one of the most important rock types in many high-temperature geothermal fields. Static batch and dynamic column experiments were combined to generate and validate sorption coefficients for As(III) and As(V) in contact with basaltic glass at pH 3-10. Validation was carried out by two empirical kinetic models and a surface complexation model (SCM). The SCM provided a better fit to the experimental column data than kinetic models at high pH values. However, in certain circumstances, an adequate estimation of As transport in the column could not be attained without incorporation of kinetic reactions. The varying mobility with pH was due to the combined effects of the variable charge of the basaltic glass with the pH point of zero charge at 6.8 and the individual As species as pH shifted, respectively. The mobility of As(III) decreased with increasing pH. The opposite was true for As(V), being nearly immobile at pH 3 to being highly mobile at pH 10. Incorporation of appropriate sorption constants, based on the measured pH and Eh of geothermal fluids, into regional groundwater-flow models should allow prediction of the As(III) and As(V) transport from geothermal systems to adjacent drinking water sources and ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Connectivity is the basic factor for the proper operation of any wireless network. In a mobile wireless sensor network it is a challenge for applications and protocols to deal with connectivity problems, as links might get up and down frequently. In these scenarios, having knowledge of the node remaining connectivity time could both improve the performance of the protocols (e.g. handoff mechanisms) and save possible scarce nodes resources (CPU, bandwidth, and energy) by preventing unfruitful transmissions. The current paper provides a solution called Genetic Machine Learning Algorithm (GMLA) to forecast the remainder connectivity time in mobile environments. It consists in combining Classifier Systems with a Markov chain model of the RF link quality. The main advantage of using an evolutionary approach is that the Markov model parameters can be discovered on-the-fly, making it possible to cope with unknown environments and mobility patterns. Simulation results show that the proposal is a very suitable solution, as it overcomes the performance obtained by similar approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parkinson's disease (PD) is a neuro-degenerative disorder, the second most common after Alzheimer's disease. After diagnosis, treatments can help to relieve the symptoms, but there is no known cure for PD. PD is characterized by a combination of motor and no-motor dysfunctions. Among the motor symptoms there is the so called Freezing of Gait (FoG). The FoG is a phenomenon in PD patients in which the feet stock to the floor and is difficult for the patient to initiate movement. FoG is a severe problem, since it is associated with falls, anxiety, loss of mobility, accidents, mortality and it has substantial clinical and social consequences decreasing the quality of life in PD patients. Medicine can be very successful in controlling movements disorders and dealing with some of the PD symptoms. However, the relationship between medication and the development of FoG remains unclear. Several studies have demonstrated that visual or auditory rhythmical cuing allows PD patients to improve their motor abilities. Rhythmic auditory stimulation (RAS) was shown to be particularly effective at improving gait, specially with patients that manifest FoG. While RAS allows to reduce the time and the effects of FoGs occurrence in PD patients after the FoG is detected, it can not avoid the episode due to the latency of detection. An improvement of the system would be the prediction of the FoG. This thesis was developed following two main objectives: (1) the finding of specifics properties during pre FoG periods different from normal walking context and other walking events like turns and stops using the information provided by the inertial measurements units (IMUs) and (2) the formulation of a model for automatically detect the pre FoG patterns in order to completely avoid the upcoming freezing event in PD patients. The first part focuses on the analysis of different methods for feature extraction which might lead in the FoG occurrence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent and potential changes in technology have resulted in the anticipation of increases in the frequency of job changes. This has led manpower policy makers to investigate the feasibility of incorporating the employment skills of job groups in the general prediction of future job learning and performance with a view to the establishment of "job families" within which transfer might be considered reciprocally high. A structured job analysis instrument (the Position Analysis Questionnaire) is evaluated in terms of two distinct sets of scores; job dimensions and synthetically established attribute/trait profiles. Studies demonstrate that estimates of a job's structure/dimensions and requisite human attributes can be reliably established. Three alternative techniques of statistically assembling profiles of the requisite human attributes for jobs are found to have differential levels of reliability and differential degrees of validity in their estimation of the "actual" ability requirements of jobs. The utility of these two sets of job descriptors to serve as representations of the cognitive structure similarity of job groups is investigated in a study which simulates a job transfer situation. The central role of the index of similarity used to assess the relationship between "target" and "present" job is demonstrated. The relative extents to which job structure similarity and job attribute similariity are associated with positive transfer are investigated. The studies demonstrate that the dimensions of jobs, and more fruitfully their requisite human attributes can serve as bases to predict job transfer learning and performance. The nature of the index of similarity used to optimally formulate predictions of transfer is such that networks of jobs might be establishable to which current job incumbents could be expected to transfer positively. The derivation of "job families" with anticipated reciprocal transfer consequences is considered to be less appropriate.