991 resultados para Mixed layer instabilities
Resumo:
Recent realistic high resolution modeling studies show a net increase of submesoscale activity in fall and winter when the mixed layer depth is at its maximum. This submesoscale activity increase is associated with a reduced deepening of the mixed layer. Both phenomena can be related to the development of mixed layer instabilities, which convert available potential energy into submesoscale eddy kinetic energy and contribute to a fast restratification by slumping the horizontal density gradient in the mixed layer. In the present work, the mixed layer formation and restratification was studied by uniformly cooling a fully turbulent zonal jet in a periodic channel at different resolutions, from eddy resolving (10 km) to submesoscale permitting (2 km). The effect of the submesoscale activity, highlighted by these different horizontal resolutions, was quantified in terms of mixed layer depth, restratification rate and buoyancy fluxes. Contrary to many idealized studies focusing on the restratification phase only, this study addresses a continuous event of mixed layer formation followed by its complete restratification. The robustness of the present results was established by ensemble simulations. The results show that, at higher resolution, when submesoscale starts to be resolved, the mixed layer formed during the surface cooling is significantly shallower and the total restratification almost three times faster. Such differences between coarse and fine resolution models are consistent with the submesoscale upward buoyancy flux, which balances the convection during the formation phase and accelerates the restratification once the surface cooling is stopped. This submesoscale buoyancy flux is active even below the mixed layer. Our simulations show that mesoscale dynamics also cause restratification, but on longer time scales. Finally, the spatial distribution of the mixed layer depth is highly heterogeneous in the presence of submesoscale activity, prompting the question of whether it is possible to parameterize submesoscale effects and their effects on the marine biology as a function of a spatially-averaged mixed layer depth.
Resumo:
Five basalt samples from the Point Sal ophiolite, California, were examined using HRTEM and AEM in order to compare observations with interpretations of XRD patterns and microprobe analyses. XRD data from ethylene-glycol-saturated samples indicate the following percentages of chlorite in mixed-layer chlorite-smectite identified for each specimen: (i) L2036 almost-equal-to 50%, (ii) L2035 almost-equal-to 70 and 20%, (iii) 1A-13 almost-equal-to 70%, (iv) 1B-42 almost-equal-to 70%, and (v) 1B-55 = 100%. Detailed electron microprobe analyses show that 'chlorite' analyses with high Si, K, Na and Ca contents are the result of interlayering with smectite-like layers. The Fe/(Fe + Mg) ratios of mixed-layer phyllosilicates from Point Sal samples are influenced by the bulk rock composition, not by the percentage of chlorite nor the structure of the phyllosilicate. Measurements of lattice-fringe images indicate that both smectite and chlorite layers are present in the Point Sal samples in abundances similar to those predicted with XRD techniques and that regular alternation of chlorite and smectite occurs at the unit-cell scale. Both 10- and 14-angstrom layers were recorded with HRTEM and interpreted to be smectite and chlorite, respectively. Regular alternation of chlorite and smectite (24-angstrom periodicity) occurs in upper lava samples L2036 and 1A-13, and lower lava sample 1B-42 for as many as seven alternations per crystallite with local layer mistakes. Sample L2035 shows disordered alternation of chlorite and smectite, with juxtaposition of smectite-like layers, suggesting that randomly interlayered chlorite (< 0.5)-smectite exists. Images of lower lava sample 1B-55 show predominantly 14-angstrom layers. Units of 24 angstrom tend to cluster in what may otherwise appear to be disordered mixtures, suggesting the existence of a corrensite end-member having thermodynamic significance.
Resumo:
HRTEM has been used to examine illite/smectite from the Mancos shale, rectorite from Garland County, Arkansas; illite from Silver Hill, Montana; Na-smectite from Crook County, Wyoming; corrensite from Packwood, Washington; and diagenetic chlorite from the Tuscaloosa formation. Thin specimens were prepared by ion milling, ultra-microtome sectioning and/or grain dispersal on a porous carbon substrate. Some smectite-bearing clays were also examined after intercalation with dodecylamine hydrochloride (DH). Intercalation of smectite with DH proved to be a reliable method of HRTEM imaging of expanded smectite, d(001) 16 A which could then be distinguished from unexpanded illite, d(001) 10 A. Lattice fringes of basal spacings of DH-intercalated rectorite and illite/smectite showed 26 A periodicity. These data support XRD studies which suggest that these samples are ordered, interstratified varieties of illite and smectite. The ion-thinned, unexpanded corrensite sample showed discrete crystallites containing 10 A and 14 A basal spacings corresponding with collapsed smectite and chlorite, respectively. Regions containing disordered layers of chlorite and smectite were also noted. Crystallites containing regular alternations of smectite and chlorite were not common. These HRTEM observations of corrensite did not corroborate XRD data. Particle sizes parallel to the c axis ranged widely for each sample studied, and many particles showed basal dimensions equivalent to > five layers. -J.M.H.
Resumo:
High resolution transmission electron microscopy of the Mighei carbonaceous chondrite matrix has revealed the presence of a new mixed layer structure material. This mixed-layer material consists of an ordered arrangement of serpentine-type (S) and brucite-type (B) layers in the sequence ... SBBSBB. ... Electron diffraction and imaging techniques show that the basal periodicity is ~ 17 Å. Discrete crystals of SBB-type material are typically curved, of small size (<1 μm) and show structural variations similar to the serpentine group minerals. Mixed-layer material also occurs in association with planar serpentine. Characteristics of SBB-type material are not consistent with known terrestrial mixed-layer clay minerals. Evidence for formation by a condensation event or by subsequent alteration of preexisting material is not yet apparent. © 1982.
Resumo:
Buoy and satellite data show pronounced subseasonal oscillations of sea surface temperature (SST) in the summertime Bay of Bengal. The SST oscillations are forced mainly by surface heat flux associated with the active break cycle of the south Asian summer monsoon. The input of freshwater (FW) from summer rain and rivers to the bay is large, but not much is known about subseasonal salinity variability. We use 2002-2007 observations from three Argo floats with 5 day repeat cycle to study the subseasonal response of temperature and salinity to surface heat and freshwater flux in the central Bay of Bengal. About 95% of Argo profiles show a shallow halocline, with substantial variability of mixed layer salinity. Estimates of surface heat and freshwater flux are based on daily satellite data sampled along the float trajectory. We find that intraseasonal variability of mixed layer temperature is mainly a response to net surface heat flux minus penetrative radiation during the summer monsoon season. In winter and spring, however, temperature variability appears to be mainly due to lateral advection rather than local heat flux. Variability of mixed layer freshwater content is generally independent of local surface flux (precipitation minus evaporation) in all seasons. There are occasions when intense monsoon rainfall leads to local freshening, but these are rare. Large fluctuations in FW appear to be due to advection, suggesting that freshwater from rivers and rain moves in eddies or filaments.
Resumo:
Three mechanisms operate during wear of materials. These mechanisms include the Strain Rate Response (SRR - effect of strain rate on plastic deformation), Tribo-Chemical Reactions (TCR) and formation of Mechanically Mixed Layers (MML). The present work investigates the effect of these three in context of the formation of MML. For this wear experiments are done on a pin-on-disc machine using Ti64 as the pin and SS316L as the disc. It is seen that apart from the speed and load, which control the SRR and TCR, the diameter of the pin controls the formation of MML, especially at higher speeds.
Resumo:
The growth behaviour of zero-mean-shear turbulent-mixed layer containing suspended solid particles has been studied experimentally and analysed theoretically in a two-layer fluid system. The potential model for estimating the turbulent entrainment rate of the mixed layer has also been suggested, including the results of the turbulent entrainment for pure two-layer fluid. The experimental results show that the entrainment behaviour of a mixed layer with the suspended particles is well described by the model. The relationship between the entrainment distance and the time, and the variation of the dimensionless entrainment rate E with the local Richardson number Ri1 for the suspended particles differ from that for the pure two-layer fluid by the factors-eta-1/5 and eta-1, respectively, where eta = 1 + sigma-0-DELTA-rho/DELTA-rho-0.
Resumo:
The Arabian Sea is unique due to the extremes in atmospheric forcing that lead to the semi-annual seasonal changes. The reversing winds of summer and winter monsoon induce the variation in the characteristics of mixed layer depth. The importance of mixed layer depth is recognized in studying the biological productivity in the ocean. In this paper variability of mixed layer depth in the north Arabian Sea have been discussed. The study is based on the data collected under North Arabian Sea Environment and Ecosystem Research (NASEER) program. The results of the study indicate that there is a significant variation in the mixed layer depth from summer to winter monsoon as well as coast to offshore.
Resumo:
The interannual anomalies of horizontal heat advection in the surface mixed layer over the equatorial Pacific Ocean in an assimilation experiment are studied and compared with existing observational analyses. The assimilation builds upon a hindcast study that has produced a good simulation of the observed equatorial currents and optimizes the simulation of the Reynolds sea surface temperature (SST) data. The comparison suggests that the assimilation has improved the simulation of the interannual horizontal heat advection of the surface mixed layer significantly. During periods of interrupted current measurements, the assimilation is shown to produce more meaningful anomalies of the heat advection than the interpolation of the observational data does. The assimilation also shows that the eddy heat flux due to the correlation between high-frequency current and SST variations, which is largely overlooked by the existing observational analyses, is important for the interannual SST balance over the equatorial Pacific. The interannual horizontal heat advection anomalies are found to be sensitive to SST errors where oceanic currents are strong, which is a challenge for ENSO prediction. The study further suggests that the observational analyses of the tropical SST balance based on the TAO and the Reynolds SST data contain significant errors due to the large gradient errors in the Reynolds SST data, which are amplified into the advection anomalies by the large equatorial currents.
Resumo:
A one-dimensional mixed-layer model, including a Mellor-Yamada level 2.5 turbulence closure scheme, was implemented to investigate the dynamical and thermal structures of the ocean surface mixed layer in the northern South China Sea. The turbulent kinetic energy released through wave breaking was incorporated into the model as a source of energy at the ocean surface, and the influence of the breaking waves on the mixed layer was studied. The numerical simulations show that the simulated SST is overestimated in summer without the breaking waves. However, the cooler SST is simulated when the effect of the breaking waves is considered, the corresponding discrepancy with the observed data decreases up to 20% and the MLD calculated averagely deepens 3.8 m. Owing to the wave-enhanced turbulence mixing in the summertime, the stratification at the bottom of the mixed layer was modified and the temperature gradient spread throughout the whole thermocline compared with the concentrated distribution without wave breaking.
Resumo:
As an important physical process at the air-sea interface, wave movement and breaking have a significant effect on the ocean surface mixed layer (OSML). When breaking waves occur at the ocean surface, turbulent kinetic energy (TKE) is input downwards, and a sublayer is formed near the surface and turbulence vertical mixing is intensively enhanced. A one-dimensional ocean model including the Mellor-Yamada level 2.5 turbulence closure equations was employed in our research on variations in turbulent energy budget within OSML. The influence of wave breaking could be introduced into the model by modifying an existing surface boundary condition of the TKE equation and specifying its input. The vertical diffusion and dissipation of TKE were effectively enhanced in the sublayer when wave breaking was considered. Turbulent energy dissipated in the sublayer was about 92.0% of the total depth-integrated dissipated TKE, which is twice higher than that of non-wave breaking. The shear production of TKE decreased by 3.5% because the mean flow fields tended to be uniform due to wave-enhanced turbulent mixing. As a result, a new local equilibrium between diffusion and dissipation of TKE was reached in the wave-enhanced layer. Below the sublayer, the local equilibrium between shear production and dissipation of TKE agreed with the conclusion drawn from the classical law-of-the-wall (Craig and Banner, 1994).