869 resultados para Mixed Elliptic Problems with Singular Interfaces


Relevância:

100.00% 100.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 35S15, 35J70, 35J40, 38J40

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper we study the approximation of functions with bounded mixed derivatives by sparse tensor product polynomials in positive order tensor product Sobolev spaces. We introduce a new sparse polynomial approximation operator which exhibits optimal convergence properties in L2 and tensorized View the MathML source simultaneously on a standard k-dimensional cube. In the special case k=2 the suggested approximation operator is also optimal in L2 and tensorized H1 (without essential boundary conditions). This allows to construct an optimal sparse p-version FEM with sparse piecewise continuous polynomial splines, reducing the number of unknowns from O(p2), needed for the full tensor product computation, to View the MathML source, required for the suggested sparse technique, preserving the same optimal convergence rate in terms of p. We apply this result to an elliptic differential equation and an elliptic integral equation with random loading and compute the covariances of the solutions with View the MathML source unknowns. Several numerical examples support the theoretical estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove exponential rates of convergence of hp-version discontinuous Galerkin (dG) interior penalty finite element methods for second-order elliptic problems with mixed Dirichlet-Neumann boundary conditions in axiparallel polyhedra. The dG discretizations are based on axiparallel, σ-geometric anisotropic meshes of mapped hexahedra and anisotropic polynomial degree distributions of μ-bounded variation. We consider piecewise analytic solutions which belong to a larger analytic class than those for the pure Dirichlet problem considered in [11, 12]. For such solutions, we establish the exponential convergence of a nonconforming dG interpolant given by local L 2 -projections on elements away from corners and edges, and by suitable local low-order quasi-interpolants on elements at corners and edges. Due to the appearance of non-homogeneous, weighted norms in the analytic regularity class, new arguments are introduced to bound the dG consistency errors in elements abutting on Neumann edges. The non-homogeneous norms also entail some crucial modifications of the stability and quasi-optimality proofs, as well as of the analysis for the anisotropic interpolation operators. The exponential convergence bounds for the dG interpolant constructed in this paper generalize the results of [11, 12] for the pure Dirichlet case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a multigrid preconditioner for solving the linear system arising from the piecewise linear nonconforming Crouzeix-Raviart discretization of second order elliptic problems with jump coe fficients. The preconditioner uses the standard conforming subspaces as coarse spaces. Numerical tests show both robustness with respect to the jump in the coe fficient and near-optimality with respect to the number of degrees of freedom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Via variational methods, we study multiplicity of solutions for the problem {-Delta u = lambda b(x)vertical bar u vertical bar(q-2)u + au + g(x, u) in Omega, u - 0 on partial derivative Omega, where a simple example for g( x, u) is |u|(p-2)u; here a, lambda are real parameters, 1 < q < 2 < p <= 2* and b(x) is a function in a suitable space L-sigma. We obtain a class of sign changing coefficients b(x) for which two non-negative solutions exist for any lambda > 0, and a total of five nontrivial solutions are obtained when lambda is small and a >= lambda(1). Note that this type of results are valid even in the critical case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce and analyze hp-version discontinuous Galerkin (dG) finite element methods for the numerical approximation of linear second-order elliptic boundary-value problems in three-dimensional polyhedral domains. To resolve possible corner-, edge- and corner-edge singularities, we consider hexahedral meshes that are geometrically and anisotropically refined toward the corresponding neighborhoods. Similarly, the local polynomial degrees are increased linearly and possibly anisotropically away from singularities. We design interior penalty hp-dG methods and prove that they are well-defined for problems with singular solutions and stable under the proposed hp-refinements. We establish (abstract) error bounds that will allow us to prove exponential rates of convergence in the second part of this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the Dirichlet problem for the equation -Delta u = lambda u +/- (x, u) + h(x) in a bounded domain, where f has a sublinear growth and h is an element of L-2. We find suitable conditions on f and It in order to have at least two solutions for X near to an eigenvalue of -Delta. A typical example to which our results apply is when f (x, u) behaves at infinity like a(x)vertical bar u vertical bar(q-2)u, with M > a(x) > delta > 0, and I < q < 2. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a weak maximum principle for optimal control problems involving mixed constraints and pointwise set control constraints. Notably such result holds for problems with possibly nonsmooth mixed constraints. Although the setback of such result resides on a convexity assumption on the extended velocity set, we show that if the number of mixed constraints is one, such convexity assumption may be removed when an interiority assumption holds. © 2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we investigate the behavior of a family of steady-state solutions of a nonlinear reaction diffusion equation when some reaction and potential terms are concentrated in a e-neighborhood of a portion G of the boundary. We assume that this e-neighborhood shrinks to G as the small parameter e goes to zero. Also, we suppose the upper boundary of this e-strip presents a highly oscillatory behavior. Our main goal here was to show that this family of solutions converges to the solutions of a limit problem, a nonlinear elliptic equation that captures the oscillatory behavior. Indeed, the reaction term and concentrating potential are transformed into a flux condition and a potential on G, which depends on the oscillating neighborhood. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: It is yet unclear if there are differences between using electronic key feature problems (KFPs) or electronic case-based multiple choice questions (cbMCQ) for the assessment of clinical decision making. Summary of Work: Fifth year medical students were exposed to clerkships which ended with a summative exam. Assessment of knowledge per exam was done by 6-9 KFPs, 9-20 cbMCQ and 9-28 MC questions. Each KFP consisted of a case vignette and three key features (KF) using “long menu” as question format. We sought students’ perceptions of the KFPs and cbMCQs in focus groups (n of students=39). Furthermore statistical data of 11 exams (n of students=377) concerning the KFPs and (cb)MCQs were compared. Summary of Results: The analysis of the focus groups resulted in four themes reflecting students’ perceptions of KFPs and their comparison with (cb)MCQ: KFPs were perceived as (i) more realistic, (ii) more difficult, (iii) more motivating for the intense study of clinical reasoning than (cb)MCQ and (iv) showed an overall good acceptance when some preconditions are taken into account. The statistical analysis revealed that there was no difference in difficulty; however KFP showed a higher discrimination and reliability (G-coefficient) even when corrected for testing times. Correlation of the different exam parts was intermediate. Conclusions: Students perceived the KFPs as more motivating for the study of clinical reasoning. Statistically KFPs showed a higher discrimination and higher reliability than cbMCQs. Take-home messages: Including KFPs with long menu questions into summative clerkship exams seems to offer positive educational effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los dominios finos, es decir, dominios sustancialmente más pequeños en alguna o varias de sus direcciones que en el resto, aparecen en muchos campos de la ciencia. Por ejemplo, dinámica de fluídos (lubricación, conducción de fluídos en tubos delgados, dinámica de oceanos...), mecánica de sólidos (barras delgadas, placas o cáscaras) o incluso en fisiología (circulación de la sangre). Así, el amplio número de posibles aplicaciones a situaciones reales ha hecho que la investigación de modelos de ecuaciones en derivadas parciales en dominios finos se convierta en un tema muy estudiado en los últimos años. Desde un punto de vista matemático, el estudio de las soluciones de una EDP en un dominio fino es un caso particular de la cuestión general relativa a cómo la variación de los dominios afecta al comportamiento de las soluciones de la EDP. En este marco, obtener la ecuación límite del modelo considerado, comparar la solución de la ecuación límite y las soluciones del problema en el dominio fino, analizar los coeficientes de la ecuación límite y comprender cómo la geometría del dominio afecta a la ecuación límite son algunos de los objetivos que deberían ser alcanzados. De hecho, es importante señalar que este tipo de cuestiones no sólo proporcionan importantes resultados teóricos sino que son muy relevantes desde el punto de vista de las aplicaciones. Por ejemplo, ser capaz de reducir el problema original a un problema mucho más sencillo, problema límite, que refleje las principales características del problema de partida puede ser muy útil para ingenieros y físicos...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extend some previous existence results for quenching type parabolic problems involving a negative power of the unknown in the equation to the case of merely integrable initial data. We show that L1 Ω is the suitable framework to obtain the continuous dependence with respect to some norm of the initial datum; This way we answer to the question raised by several authors in the previous literature. We also show the complete quenching phenomena for such a L1-initial datum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do grau de Doutor em Matemática na especialidade de Equações Diferenciais, pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a Galerkin method with piecewise polynomial continuous elements for fully nonlinear elliptic equations. A key tool is the discretization proposed in Lakkis and Pryer, 2011, allowing us to work directly on the strong form of a linear PDE. An added benefit to making use of this discretization method is that a recovered (finite element) Hessian is a byproduct of the solution process. We build on the linear method and ultimately construct two different methodologies for the solution of second order fully nonlinear PDEs. Benchmark numerical results illustrate the convergence properties of the scheme for some test problems as well as the Monge–Amp`ere equation and the Pucci equation.