958 resultados para Miocene bacteria and mesofauna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the effectiveness of Reciproc for the removal of cultivable bacteria and endotoxins from root canals in comparison with multifile rotary systems. The root canals of forty human single-rooted mandibular pre-molars were contaminated with an Escherichia coli suspension for 21 days and randomly assigned to four groups according to the instrumentation system: GI - Reciproc (VDW); GII - Mtwo (VDW); GIII - ProTaper Universal (Dentsply Maillefer); and GIV -FKG Race(™) (FKG Dentaire) (n = 10 per group). Bacterial and endotoxin samples were taken with a sterile/apyrogenic paper point before (s1) and after instrumentation (s2). Culture techniques determined the colony-forming units (CFU) and the Limulus Amebocyte Lysate assay was used for endotoxin quantification. Results were submitted to paired t-test and anova. At s1, bacteria and endotoxins were recovered in 100% of the root canals investigated (40/40). After instrumentation, all systems were associated with a highly significant reduction of the bacterial load and endotoxin levels, respectively: GI - Reciproc (99.34% and 91.69%); GII - Mtwo (99.86% and 83.11%); GIII - ProTaper (99.93% and 78.56%) and GIV - FKG Race(™) (99.99% and 82.52%) (P < 0.001). No statistical difference were found amongst the instrumentation systems regarding bacteria and endotoxin removal (P > 0.01). The reciprocating single file, Reciproc, was as effective as the multifile rotary systems for the removal of bacteria and endotoxins from root canals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of tannery sludge to soils is a form of recycling; however, few studies have examined the impacts of this practice on soil microbial properties. We studied effects of two applications (2006 and 2007) of tannery sludge (with a low chromium content) on the structure of the bacterial community and on the microbial activity of soils. We fertilized an agricultural area in Rolandia, Parana state, Brazil with different doses of sludge based on total N content, which ranged from 0 to 1200 kg N ha(-1). Sludge remained on the soil surface for three months before being plowed. Soils were sampled seven times during the experiment. Bacterial community structure, assessed by denaturing gradient gel electrophoresis (DGGE), was modified by the application of tannery sludge. Soon after the first application, there was clear separation between the bacterial communities in different treatments, such that each dose of sludge was associated with a specific community. These differences remained until 300 days after application and also after the second sludge application, but 666 days after the beginning of the experiment no differences were found in the bacterial communities of the lowest doses and the control. The principal response curve (PRC) analysis showed that the first sludge application strongly stimulated biological activity even 300 days after application. The second application also stimulated activity, but at a lower magnitude and for a shorter time, given that 260 days after the second application there was no difference in biological activity among treatments. PRC also showed that the properties most influenced by the application of tannery sludge were enzymatic activities related to N cycling (asparaginase and urease). The redundancy analysis (RDA) showed that tannery sludge`s influence on microbial activity is mainly related to increases in inorganic N and soil pH. Results showed that changes in the structure of the bacterial community in the studied soils were directly related to changes of their biological activity. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twenty endophytic bacteria were isolated from the meristematic tissues of three varieties of strawberry cultivated in vitro, and further identified, by FAME profile, into the genera Bacillus and Sphingopyxis. The strains were also characterized according to indole acetic acid production, phosphate solubilization and potential for plant growth promotion. Results showed that 15 strains produced high levels of IAA and all 20 showed potential for solubilizing inorganic phosphate. Plant growth promotion evaluated under greenhouse conditions revealed the ability of the strains to enhance the root number, length and dry weight and also the leaf number, petiole length and dry weight of the aerial portion. Seven Bacillus spp. strains promoted root development and one strain of Sphingopyxis sp. promoted the development of plant shoots. The plant growth promotion showed to be correlated to IAA production and phosphate solubilization. The data also suggested that bacterial effects could potentially be harnessed to promote plant growth during seedling acclimatization in strawberry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims : To study the effects of amylomaize starch and modified (carboxymethylated and acetylated) amylomaize starches on the composition of colonic bacteria and the production of volatile fatty acids, in mice. Methods and Results : Balb/c mice were fed with experimental diets containing various amount of amylomaize and modified amylomaize starches. Colonic bacterial populations and short-chain fatty acids were monitored. Results showed that the increases in indigenous bifidobacteria were detected in mice fed all starches tested; however, the highest numbers were observed in the group fed with 40% unmodified amylomaize starch. The starch type influenced the populations of indigenous Lactobacillus , Bacteroides and coliforms. High Lactobacillus numbers were achieved in the colon of mice fed with high concentration of amylomaize starch. Acetylated amylomaize starch significantly reduced the population of coliforms. In addition, orally dosed amylomaize utilizing bifidobacteria reached their highest levels when fed together with amylomaize or carboxymethylated amylomaize starch and in both cases butyrate levels were markedly increased. Conclusions: These results indicate that different amylomaize starches could generate desirable variation in gut microflora and that particular starches may be used to selectively modify gut function. Significance and Impact of Study: Amylomaize starch appeared to enhance the desirable composition of colonic bacteria in mice, and suggested it possessed the potential prebiotic properties.MTherefore, resistant starch and its chemical derivatives may exert beneficial impacts to the human colon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Besides fixing N2, some diazotrophic bacteria or diazotrophs, also synthesize organic acids and are able to solubilize rock phosphates, increasing the availability of P for plants. The application of these bacteria to pineapple leaf axils in combination with rock phosphate could increase N and P availability for the crop, due to the bacterial activity of biological nitrogen fixation and phosphate solubilization. The objectives of this study were: (i) to select and characterize diazotrophs able to solubilize phosphates in vitro and (ii) evaluate the initial performance of the pineapple cultivars Imperial and Pérola in response to inoculation with selected bacteria in combination with rock phosphate. The experiments were conducted at Universidade Estadual do Norte Fluminense Darcy Ribeiro, in 2009. In the treatments with bacteria the leaf contents of N, P and K were higher than those of the controls, followed by an increase in plant growth. These results indicate that the combined application of diazotrophic phosphate-solubilizing bacteria Burkholderia together with Araxá rock phosphate can be used to improve the initial performance of pineapple slips.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, most individuals spend about 80% of their time indoor and, consequently, the exposure to the indoor environment becomes more relevant than to the outdoor one. Children spend most of their time at home and at school and evaluations of their indoor environment are important for the time-weighted exposure. Due to their airways still in development, children are a sensitive group with higher risk than adults. Larger impact in health and educational performance of children demand indoor air quality studies of schools. The aim of this study was to assess the children exposure to bioaerosols. A methodology based upon passive sampling was applied to evaluate fungi, bacteria and pollens; its procedures and applicability was optimized. An indoor air study by passive sampling represents an easier and cheaper method when comparing with the use of automatic active samplers. Furthermore, it is possible to achieve important quality information without interfering in the classroom activities. The study was conducted in three schools, representative of different environments in the Lisbon urban area, at three different periods of the year to obtain a seasonal variation, to estimate the variability through the city and to understand the underneath causes. Fungi and bacteria were collected indoor and outdoor of the classrooms to determine the indoor/outdoor ratios and to assess the level of outdoor contamination upon the indoor environment. The children's exposure to pollen grains inside the classrooms was also assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Helicobacter pylori was investigated in 189 patients for culture, microscopic visualization of campylobacter-like organisms (CLO) and a ten minute urease test. In 136 (72%) the bacteria was isolated, and in 98 of them CLO were histologically detected. Specificity, sensitivity, positive and negative predictive values of microscopic visualization of CLO were: 0.77, 0.73, 0.97 and 0.51, respectively; 98 culture-positive patients were urease test positive. Specificity, sensitivity, positive and negative predictive values of the urease test were: 0.83, 0.72, 0.92 and 0.54, respectively. Comparing the urease test with culture of H. pylori combined with microscopic visualization of CLO, its specificity, sensitivity, positive and negative predictive values were: 0.95, 0.71, 0.98 and 0.48, respectively. Probably, these values are not real, since bacteria different from H. pylori could be misclassified as CLO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multi-resistência a antibióticos e medicamentos usados em quimioterapia é um dos grandes problemas com os quais as instituições de saúde se debatem hoje em dia. A acção provocada por bombas de efluxo é uma das suas causas. Estas bombas têm uma importância fundamental, uma vez que, ao expelirem todo o tipo de tóxicos para o exterior das células, também expelem medicamentos, fazendo com que estes não tenham o efeito desejado dentro delas. As bombas de efluxo são transportadores que se encontram nas membranas de todo o tipo de células. Existem dois grandes tipos de bombas de efluxo: as primárias e as secundárias. As primeiras conferem multi-resistência principalmente em células eucariotas, como as células do cancro em humanos, tendo como função a mediação da repulsa de substâncias tóxicas por intermédio da hidrólise de ATP. A primeira a ser descoberta e mais estudada destas bombas foi a ABCB1 que é o gene que codifica a glicoproteína-P (P de permeabilidade). Enquanto as secundárias, que são a maior fonte de multi-resistência em bactérias, promovem a extrusão de substâncias tóxicas através da força motriz de protões. Neste tipo de bombas são conhecidas quatro famílias principais, das quais uma das mais importantes é a superfamília RND, uma vez que inclui a bomba AcrAB-TolC, que é muito importante no metabolismo xenobiótico de bactérias Gramnegativas, nomeadamente a E.coli. Com o objectivo de reverter a multi-resistência, tanto em células eucariotas como procariotas, têm-se desenvolvido estratégias de combate que envolvem a descoberta de substâncias que inibam as bombas de efluxo. Assim sendo, ao longo dos tempos têm sido descobertas variadas substâncias que cumprem este objectivo. É o caso, por exemplo, dos derivados de fluoroquinolonas usados como inibidores de bombas de efluxo em bactérias ou do Tamoxifen, utilizado na terapia de pacientes com cancro da mama. Um dos grupos de substâncias estudados para o desenvolvimento de possíveis compostos que actuem como reversores de multi-resistência são os compostos derivados de hidantoínas. Estes, são conhecidos por possuírem uma grande variedade de propriedades bioquímicas e farmacológicas, sendo portanto usados para tratarem algumas doenças em humanos, como a epilepsia. Nestes, estão englobados compostos com actividade anti-convulsão que constitui a sua grande mais-valia e, dependente da substituição no anel que os constitui, uma grande variedade de outras propriedades farmacológicas como a anti-fungica, a anti-arritmica, a anti-viral, a anti-diabética ou por exemplo a antagonização de determinados receptores, como os da serotonina. Apesar de pouco usados em estudos experimentais para desenvolver substâncias anti-carcinogénicas, existem alguns estudos com este efeito. Objectivos: O presente projecto envolve o estudo de bombas de efluxo primárias e secundárias, em células eucariotas e procariotas, respectivamente. Em bactérias, foram usados quatro modelos experimentais: Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, E. coli AG 100 e Salmonella Enteritidis NCTC 13349. Em células de cancro foram usadas, células T de linfoma de rato parentais e células T de linfoma de rato transfectadas com o gene humano MDR-1. O principal objectivo deste estudo foi a pesquisa de novos moduladores de bombas de efluxo presentes em bactérias e células do cancro, tentando assim contribuir para o desenvolvimento de novos agentes farmacológicos que consigam reverter a multi-resistência a medicamentos. Assim sendo foram testados trinta compostos derivados de hidantoínas: SZ-2, SZ-7, LL-9, BS-1, JH-63, MN-3, TD-7k, GG-5k, P3, P7, P10, P11, RW-15b, AD-26, RW-13, AD-29, KF-2, PDPH-3, Mor-1, KK-XV, Thioam-1, JHF-1, JHC-2, JHP-1, Fur-2, GL-1, GL-7, GL-14, GL-16, GL-18. Como forma de atingir estes objectivos, a actividade biológica dos trinta compostos derivados de hidantoínas foi avaliada nas quatro estirpes de bactérias da seguinte forma: foram determinadas as concentrações mínimas inibitórias dos trinta compostos como forma de definir as concentrações em que os compostos seriam utilizados. Os compostos foram posteriormente testadas com um método fluorométrico de acumulação de brometo de etídeo, que é um substrato comum em bombas de efluxo bacterianas, desenvolvido por Viveiros et al. A actividade biológica dos compostos derivados de hidantoínas nas células de cancro foi demonstrada por diferentes métodos. O efeito anti-proliferativo e citotóxico dos trinta compostos foi avaliado nas células T de linfoma de rato transfectadas com o gene humano MDR-1 pelo método de thiazolyl de tetrazólio (MTT). Como o brometo de etídeo também é expelido pelos transportadores ABC, estes compostos foram posteriormente testados com um método fluorométrico de acumulação de brometo de etídeo desenvolvido por Spengler et al nos dois diferentes tipos de células eucariotas. Resultados: A maioria dos compostos derivados de hidantoínas foi eficaz na modulação de bombas de efluxo, nas duas estirpes de bactérias Gram-negativas e nos dois diferentes tipos de células T de linfoma. Em contraste com estes resultados, nas duas estirpes de células Gram-positivas, a maioria dos compostos tiveram pouco efeito na inibição de bombas de efluxo ou até nenhum, em muitos dos casos. De uma maneira geral os melhores compostos nas diferentes estirpes de bactérias foram: Thioam-1, SZ-2, P3, Rw-15b, AD-26, AD-29, GL-18, GL-7, KF-2, SZ-7, MN-3, GL-16 e GL- 14. Foram portanto estes os compostos que provocaram maior acumulação de brometo de etídeo, inibindo assim com maior eficácia as bombas de efluxo. No presente estudo, a maioria dos compostos conseguiu inibir a resistência provocada pela bomba de efluxo ABCB1, tanto nas células parentais bem como nas células que sobre-expressam esta bomba, causando a acumulação de brometo de etídeo dentro das células. As células que sobreexpressam a bomba ABCB1 foram posteriormente testadas com citometria de fluxo que é a técnica padrão para pesquisa de inibidores de bombas de efluxo. Os compostos que foram mais efectivos na inibição da bomba ABCB1, causando assim maior acumulação de brometo de etídeo nas células que sobre-expressam esta bomba foram: PDPH-3, GL-7, KK-XV, AD-29, Thioam-1, SZ-7, KF-2, MN-3, RW-13, LL-9, P3, AD-26, JH-63 e RW- 15b. Este facto não corroborou totalmente os resultados da citometria de fluxo uma vez que os moduladores que provocaram maior inibição da bomba ABCB1 foram o MN-3, JH-63 e o BS-1, sendo que o último não foi seleccionado como um bom composto usando o método fluorométrico de acumulação de brometo de etídeo. Conclusão: Os compostos derivados de hidantoínas testados tiveram maior efeito nas estirpes de bactérias Gram-negativas do que nas Gram-positivas. Relativamente às células eucariotas, as estruturas mais activas apresentam substituintes aromáticos bem como alguns fragmentos aminicos terciários.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of bioactive compounds either toxic or with pharmacological applications by cyanobacteria is well established. However, picoplanktonic forms within this group of organisms have rarely been studied in this context. In this study, the toxicological potential of picocyanobacteria from a clade of marine Cyanobium strains isolated from the Portuguese coast was examined using different biological models. First, strains were identified by applying morphological and molecular approaches and cultured under lab conditions. A crude extract and three fractions reflecting a preliminary segregation of lipophilic metabolites were tested for toxicity with the marine microalga Nannochloropsis sp., the bacteria Pseudomonas sp., the brine shrimp Artemia salina, and fertilized eggs of the sea urchin Paracentrotus lividus. No significant apparent adverse effects were noted against Artemia salina. However, significant adverse effects were found in all other assays, with an inhibition of Nannochloropsis sp. and Pseudomonas sp. growth and marked reduction in Paracentrotus lividus larvae length. The results obtained indicated that Cyanobium genus may serve as a potential source of interesting bioactive compounds and emphasize the importance of also studying smaller picoplanktonic fractions of marine cyanobacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of products from marine bioresources is gaining importance in the biotechnology sector. The global market for Marine Biotechnology products and processes was, in 2010, estimated at 2.8 billion with a cumulative annual growth rate of 510% (Børresen et al., Marine biotechnology: a new vision and strategy for Europe. Marine Board Position Paper 15. Beernem: Marine Board-ESF, 2010). Marine Biotechnology has the potential to make significant contributions towards the sustainable supply of food and energy, the solution of climate change and environmental degradation issues, and the human health. Besides the creation of jobs and wealth, it will contribute to the development of a greener economy. Thus, huge expectations anticipate the global development of marine biotechnology. The marine environment represents more than 70% of the Earths surface and includes the largest ranges of temperature, light and pressure encountered by life. These diverse marine environments still remain largely unexplored, in comparison with terrestrial habitats. Notwithstanding, efforts are being done by the scientific community to widespread the knowledge on oceans microbial life. For example, the J. Craig Venter Institute, in collaboration with the University of California, San Diego (UCSD), and Scripps Institution of Oceanography have built a state-of-the-art computational resource along with software tools to catalogue and interpret microbial life in the worlds oceans. The potential application of the marine biotechnology in the bioenergy sector is wide and, certainly, will evolve far beyond the current interest in marine algae. This chapter revises the current knowledge on marine anaerobic bacteria and archaea with a role in bio-hydrogen production, syngas fermentation and bio-electrochemical processes, three examples of bioenergy production routes.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animals (122 mice) were infected each with eighty cercariae of S. mansoni and subsequently challenged intravenously eight weeks later with the following gram-negative organisms. S. typhi, E. coli, Klebsiella-enterobacter species, Proteus mirabilis and Pseudomonas aeruginosa. Enumeration of bacteria in the liver, spleen and blood and S. mansoni from the portal sistem was performed from one to four weeks later in infected animals. A significant difference between infection produced by S. typhi and other gram negative organisms was observed: S. typhi persisted longer in the spleen and liver and could be recovered from S. mansoni worms up to three weeks following bacterial infection. Other gram negative bacteria disappeared from S. mansoni worms after two weeks of initial challenge. Additional animals (51 mice) infected with S. mansoni were given S. typhi, E. coli or sterile saline. After two weeks, animals were sacrificed and the recovery rate of worms from the portal system, and the mesenteric and hepatic oogram were determined. in animals infected with E. coli a significant decrease in the number of worms was observed compared to the saline control group; thirty worms were recovered in the control group compared to two worms in e. coli infected animals. In addition, the patterns of oviposition was significantly different in these latter animals suggesting complete inhibition of this process. Following S. typhi infection the difference in recovery of worms and pattern of oviposition was minimal. These findings suggest a difference in the interaction of various gram negative bacteria and S. mansoni and are consistent with the clinical observation of prolonged salmonella bacteremia in patients with schistosomiasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While genetic polymorphisms play a paramount role in tuberculosis (TB), less is known about their contribution to the severity of diseases caused by other intracellular bacteria and fastidious microorganisms. We searched electronic databases for observational studies reporting on host factors and genetic predisposition to infections caused by intracellular fastidious bacteria published up to 30 May 2014. The contribution of genetic polymorphisms was documented for TB. This includes genetic defects in the mononuclear phagocyte/T helper cell type 1 (Th1) pathway contributing to disseminated TB disease in children and genome-wide linkage analysis (GWAS) in reactivated pulmonary TB in adults. Similarly, experimental studies supported the role of host genetic factors in the clinical presentation of illnesses resulting from other fastidious intracellular bacteria. These include IL-6 -174G/C or low mannose-binding (MBL) polymorphisms, which are incriminated in chronic pulmonary conditions triggered by C. pneumoniae, type 2-like cytokine secretion polymorphisms, which are correlated with various clinical patterns of M. pneumoniae infections, and genetic variation in the NOD2 gene, which is an indicator of tubal pathology resulting from Chamydia trachomatis infections. Monocyte/macrophage migration and T lymphocyte recruitment defects are corroborated to ineffective granuloma formation observed among patients with chronic Q fever. Similar genetic polymorphisms have also been suggested for infections caused by T. whipplei although not confirmed yet. In conclusion, this review supports the paramount role of genetic factors in clinical presentations and severity of infections caused by intracellular fastidious bacteria. Genetic predisposition should be further explored through such as exome sequencing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxalatecarbonate pathway involves the oxidation of calcium oxalate to low-magnesium calcite and represents a potential long-term terrestrial sink for atmospheric CO2. In this pathway, bacterial oxalate degradation is associated with a strong local alkalinization and subsequent carbonate precipitation. In order to test whether this process occurs in soil, the role of bacteria, fungi and calcium oxalate amendments was studied using microcosms. In a model system with sterile soil amended with laboratory cultures of oxalotrophic bacteria and fungi, the addition of calcium oxalate induced a distinct pH shift and led to the final precipitation of calcite. However, the simultaneous presence of bacteria and fungi was essential to drive this pH shift. Growth of both oxalotrophic bacteria and fungi was confirmed by qPCR on the frc (oxalotrophic bacteria) and 16S rRNA genes, and the quantification of ergosterol (active fungal biomass) respectively. The experiment was replicated in microcosms with non-sterilized soil. In this case, the bacterial and fungal contribution to oxalate degradation was evaluated by treatments with specific biocides (cycloheximide and bronopol). Results showed that the autochthonous microflora oxidized calcium oxalate and induced a significant soil alkalinization. Moreover, data confirmed the results from the model soil showing that bacteria are essentially responsible for the pH shift, but require the presence of fungi for their oxalotrophic activity. The combined results highlight that the interaction between bacteria and fungi is essential to drive metabolic processes in complex environments such as soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methicillin resistant Staphylococcus aureus (MRSA) bacteria have emerged in the early 1980's in numerous health care institutions around the world. The main transmission mechanism within hospitals and healthcare facilities is through the hands of health care workers. Resistant to several antibiotics, the MRSA is one of the most feared pathogens in the hospital setting since it is very difficult to eradicate with the standard treatments. There are still a limited number of anti-MRSA antibiotics but the first cases of resistance to these compounds have already been reported and their frequency is likely to increase in the coming years. Every year, the MRSA infections result in major human and financial costs, due to the high associated mortality and expenses related to the required care. Measures towards a faster detection of resistant bacteria and establishment of appropriate antibiotic treatment parameters are fundamental. Also as part as infection prevention, diminution of bacteria present on the commonly touched surfaces could also limit the spread and selection of antibiotic resistant bacteria. During my thesis, projects were developed around MRSA and antibiotic resistance investigation using innovative technologies. The thesis was subdivided in three main parts with the use of atomic force microscopy AFM for antibiotic resistance detection in part 1, the importance of the bacterial inoculum size in the selection of antibiotic resistance in part 2 and the testing of antimicrobial surfaces creating by sputtering copper onto polyester in part 3. In part 1 the AFM was used two different ways, first for the measurement of stiffness (elasticity) of bacteria and second as a nanosensor for antibiotic susceptibility testing. The stiffness of MRSA with different susceptibility profiles to vancomycin was investigated using the stiffness tomography mode of the AFM and results have demonstrated and increased stiffness in the vancomycin resistant strains that also paralleled with increased thickness of the bacterial cell wall. Parts of the AFM were also used to build a new antibiotic susceptibility-testing device. This nano sensor was able to measure vibrations emitted from living bacteria that ceased definitively upon antibiotic exposure to which they were susceptible but restarted after antibiotic removal to which they were resistant, allowing in a matter of minute the assessment of antibiotic susceptibility determination. In part 2 the inoculum effect (IE) of vancomycin, daptomycin and linezolid and its importance in antibiotic resistance selection was investigated with MRSA during a 15 days of cycling experiment. Results indicated that a high bacterial inoculum and a prolonged antibiotic exposure were two key factors in the in vitro antibiotic resistance selection in MRSA and should be taken into consideration when choosing the drug treatment. Finally in part 3 bactericidal textile surfaces were investigated against MRSA. Polyesters coated after 160 seconds of copper sputtering have demonstrated a high bactericidal activity reducing the bacterial load of at least 3 logio after one hour of contact. -- Au cours des dernières décennies, des bactéries multirésistantes aux antibiotiques (BMR) ont émergé dans les hôpitaux du monde entier. Depuis lors, le nombre de BMR et la prévalence des infections liées aux soins (IAS) continuent de croître et sont associés à une augmentation des taux de morbidité et de mortalité ainsi qu'à des coûts élevés. De plus, le nombre de résistance à différentes classes d'antibiotiques a également augmenté parmi les BMR, limitant ainsi les options thérapeutiques disponibles lorsqu'elles ont liées a des infections. Des mesures visant une détection plus rapide des bactéries résistantes ainsi que l'établissement des paramètres de traitement antibiotiques adéquats sont primordiales lors d'infections déjà présentes. Dans une optique de prévention, la diminution des bactéries présentes sur les surfaces communément touchées pourrait aussi freiner la dissémination et l'évolution des bactéries résistantes. Durant ma thèse, différents projets incluant des nouvelles technologies et évoluant autour de la résistance antibiotique ont été traités. Des nouvelles technologies telles que le microscope à force atomique (AFM) et la pulvérisation cathodique de cuivre (PCC) ont été utilisées, et le Staphylococcus aureus résistant à la méticilline (SARM) a été la principale BMR étudiée. Deux grandes lignes de recherche ont été développées; la première visant à détecter la résistance antibiotique plus rapidement avec l'AFM et la seconde visant à prévenir la dissémination des BMR avec des surfaces crées grâce à la PCC. L'AFM a tout d'abord été utilisé en tant que microscope à sonde locale afin d'investiguer la résistance à la vancomycine chez les SARMs. Les résultats ont démontré que la rigidité de la paroi augmentait avec la résistance à la vancomycine et que celle-ci corrélait aussi avec une augmentation de l'épaisseur des parois, vérifiée grâce à la microscopie électronique. Des parties d'un AFM ont été ensuite utilisées afin de créer un nouveau dispositif de test de sensibilité aux antibiotiques, un nanocapteur. Ce nanocapteur mesure des vibrations produites par les bactéries vivantes. Après l'ajout d'antibiotique, les vibrations cessent définitivement chez les bactéries sensibles à l'antibiotique. En revanche pour les bactéries résistantes, les vibrations reprennent après le retrait de l'antibiotique dans le milieu permettant ainsi, en l'espace de minutes de détecter la sensibilité de la bactérie à un antibiotique. La PCC a été utilisée afin de créer des surfaces bactéricides pour la prévention de la viabilité des BMR sur des surfaces inertes. Des polyesters finement recouverts de cuivre (Cu), connu pour ses propriétés bactéricides, ont été produits et testés contre des SARMs. Une méthode de détection de viabilité des bactéries sur ces surfaces a été mise au point, et les polyesters obtenus après 160 secondes de pulvérisation au Cu ont démontré une excellente activité bactéricide, diminuant la charge bactérienne d'au moins 3 logio après une heure de contact. En conclusion, l'utilisation de nouvelles technologies nous a permis d'évoluer vers de méthodes de détection de la résistance antibiotique plus rapides ainsi que vers le développement d'un nouveau type de surface bactéricide, dans le but d'améliorer le diagnostic et la gestion des BMR.