978 resultados para Miocene (Messinian)–Pliocene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed sedimentological and paleontological analysis of the uppermost Miocene (Messinian)–Pliocene boundary at the northern border of the Bajo Segura Basin, southeastern Spain, was carried out in order to describe the evolution of the regional paleocoastline during the Pliocene reflooding of the Mediterranean immediately after the sea-level fall related to the Messinian Salinity Crisis. Multiple trace fossils typical of firm- and hardgrounds were recognized, allowing identification of Glossifungites (two different types), Entobia, and Gnathichnus ichnofacies. Trace-fossil analysis showed that lithology and media consistency exerted considerable control on the development of the different ichnocoenoses and that there was a clear decrease in hydrodynamic energy from a coastal to a shallow-water shelf environment related to progressive sea-level rise. Ichnological and sedimentological data provide evidence that the definitive flooding of the Mediterranean was rapid and synchronous throughout the northern margin of the Bajo Segura Basin. The following model for the Pliocene transgression in the study area is therefore proposed: (1) the marine ingression penetrated along the incised paleovalleys carved as a consequence of the fall in sea level, where the first two Pliocene systems were deposited (P0–P1); (2) during the maximum flooding surface of the transgression, the sea overflowed the margins of the paleovalleys and extended throughout the entire northern margin of the basin; and (3) the third Pliocene system was deposited, forming the lower part of a highstand systems tract (P2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The initiation of the Benguela upwelling has been dated to the late Miocene, but estimates of its sea surface temperature evolution are not available. This study presents data from Ocean Drilling Program (ODP) Site 1085 recovered from the southern Cape Basin. Samples of the middle Miocene to Pliocene were analyzed for alkenone-based (UK'37, SSTUK) and glycerol dialkyl glycerol tetraether (GDGT) based (TEX86, TempTEX) water temperature proxies. In concordance with global cooling during the Miocene, SSTUK and TempTEX exhibit a decline of about 8°C and 16°C, respectively. The temperature trends suggest an inflow of cold Antarctic waters triggered by Antarctic ice sheet expansion and intensification of Southern Hemisphere southeasterly winds. A temperature offset between both proxies developed with the onset of upwelling, which can be explained by differences in habitat: alkenone-producing phytoplankton live in the euphotic zone and record sea surface temperatures, while GDGT-producing Thaumarchaeota are displaced to colder subsurface waters in upwelling-influenced areas and record subsurface water temperatures. We suggest that variations in subsurface water temperatures were driven by advection of cold Antarctic waters and thermocline adjustments that were due to changes in North Atlantic deep water formation. A decline in surface temperatures, an increased offset between temperature proxies, and an increase in primary productivity suggest the establishment of the Benguela upwelling at 10 Ma. During the Messinian Salinity Crisis, between 7 and 5 Ma, surface and subsurface temperature estimates became similar, likely because of a strong reduction in Atlantic overturning circulation, while high total organic carbon contents suggest a "biogenic bloom." In the Pliocene the offset between the temperature estimates and the cooling trend was reestablished.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pollen and stable carbon (d13C) and hydrogen (dD) isotope ratios of terrestrial plant wax from the South Atlantic sediment core, ODP Site 1085, is used to reconstruct Miocene to Pliocene changes of vegetation and rainfall regime of western southern Africa. Our results reveal changes in the relative amount of precipitation and indicate a shift of the main moisture source from the Atlantic to the Indian Ocean during the onset of a major aridification 8 Ma ago. We emphasise the importance of declining precipitation during the expansion of C4 and CAM (mainly succulent) vegetation in South Africa. We suggest that the C4 plant expansion resulted from an increased equator-pole temperature gradient caused by the initiation of strong Atlantic Meridional Overturning Circulation following the shoaling of the Central American Seaway during the Late Miocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic foraminiferal stable isotope records for the past 11 Myr from a recently drilled site in the sub-Antarctic South Atlantic (Site 1088, Ocean Drilling Program Leg 177, 41°S, 15°E, 2082 m water depth) provide, for the first time, a continuous long-term perspective on deep water distribution patterns and Southern Ocean climate change from the late Miocene through the early Pliocene. I have compiled published late Miocene through Pliocene stable isotope records to place the new South Atlantic record in a global framework. Carbon isotope gradients between the North Atlantic, South Atlantic, and Pacific indicate that a nutrient-depleted watermass, probably of North Atlantic origin, reached the sub-Antarctic South Atlantic after 6.6 Ma. By 6.0 Ma the relative proportion of the northern-provenance watermass was similar to today and by the early Pliocene it had increased to greater than the modern proportion suggesting that thermohaline overturn in the Atlantic was relatively strong prior to the early Pliocene interval of inferred climatic warmth. Site 1088 oxygen isotope values display a two-step increase between ~7.4 Ma and 6.9 Ma, a trend that parallels a published delta18O record of a site on the Atlantic coast of Morocco. This is perhaps best explained by a gradual cooling of watermasses that were sinking in the Southern Ocean. I speculate that relatively strong thermohaline overturn at rates comparable to the present day interglacial interval during the latest Miocene may have provided the initial conditions for early Pliocene climatic warmth. The impact of an emerging Central American Seaway on Atlantic-Pacific Ocean upper water exchange may have been felt in the North Atlantic beginning in the latest Miocene between 6.6 and 6.0 Ma, which would be ~1.5 Myr earlier than previously thought.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One hundred and sixty core samples were analyzed from Hole 832B to evaluate planktonic foraminiferal datum levels, and to zone and correlate the borehole succession. A total of 32 biostratigraphic events were recognized in the interval from Core 134-832B-59R through 134-832B-73R (702.49 through 846.4 meters below seafloor [mbsf]). These include 17 first appearance datum levels (FAD), 10 last appearance datum levels (LAD), and 5 coiling-change events in trochospiral species. The studied succession has been subdivided into nine planktonic foraminiferal zones (viz. downsequence N.22, N.21, N.20, N.19, N.18, N.17B, N.17A-N.16, N.15, N.8). The zonal index species occur in the expected stratigraphic order for zonal correlation, but some of the zonal boundaries may be diachronous compared to other localities in the western Pacific region. The FAD of Globorotalia (Truncorotalia) truncatulinoides (d' Orbigny) at 714.10 mbsf defines the boundary between the Zone N.22 and N.21; the boundary between Zones N.21 and N.20 at 741.73 mbsf is marked by the FAD of Globorotalia (Truncorotalia) tosaensis Takayanagi and Saito. The lower boundary of Zone N.20 is placed at 747.65 mbsf, based on the FAD of Globorotalia (Truncorotalia) crassaformis s.s. (Galloway and Wissler); the FAD of Sphaeroidinella dehiscens (Parker and Jones) at 756.61 mbsf defines the boundary between Zones N.18 and N.19. The FAD of Globorotalia (Globorotalia) tumida tumida (Brady) at 811.15 mbsf marks the boundary between Zones N.18 and N.17B. The boundary between Zones N.17B and N.17Ais placed at 843.52 mbsf, based on the FAD of Pulleniatina primalis Banner and Blow. A change in depositional conditions occurs at 846.4 mbsf just below the Zone N.17B lower boundary and is marked by the first appearance of abundant planktonic foraminifers in the region. The interval between 849.13 and 856.1 mbsf is placed in undifferentiated Zones N.17A and N.16, based on the rare occurrence of Neogloboquadrina acostaensis (Blow). The sparsely fossiliferous volcanic sandstone unit between 934.19 and 955.67 mbsf is positioned within Zone N.15 based on the presence of Globigerina (Zeaglobigerina) nepenthes Todd and Globigerinoides (Zeaglobigerina) druryi Arkers, and absence of N. acostaensis and Globorotalia (Jenkinsella) siakensis LeRoy. An unconformity between 955.67 and 971.80 mbsf may explain the absence of Zones N.14 through N.9. Basal Zone N.8 is recognized at 971.80 to 1008.60 mbsf by the presence of Globigerinoides sicanus De Stefani and the absence of Praeorbulina and Orbulina spp. The age of the succession between 702.49 and 1008.6 mbsf extends from the latest Pliocene or earliest Pleistocene (Zone N.22) to the earliest middle Miocene (Zone N.8). Among the datum levels evaluated here, the following events are considered to be the most reliable for time correlation in the studied region: the FADs of G. (T.) truncatulinoides, G. (T.) tosaensis, G. (T.) crassaformis, S. dehiscens, G. conglobatus (Brady), G. (G.) tumida tumida, and P. primalis; and the LADs of Globorotalia (Menardella) multicamerata Cushman and Jarvis, and Dentoglobigerina altispira altispira (Cushman and Jarvis). Application of a chronometric scale to part of the succession, suggests that the interval of calcareous sediment between 702.49 and 846.4 mbsf accumulated at about 30 m/m.y.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The calcareous nannofossil biostratigraphy of ODP Leg 177 Sites 1088 and 1090 (Subantarctic sector from the Atlantic Ocean) is discussed. Most nannofossil zonal boundaries of Martini (1971) and Okada and Bukry (1980) were recognized for the studied mid-high-latitude sediments. Conventional low-latitude marker species such as Amaurolithus spp., Discoaster spp., Triquetrorhabdulus spp., Ceratolithus spp. were recorded as rare and scattered, which impeded the development of a detailed nannofossil biostratigraphic zonation of some Miocene and Pliocene intervals. Because of the absence of some primary biostratigraphic marker species, additional second-order bioevents, such as the first occurrence of Calcidiscus macintyrei and the last occurrence of Coccolithus miopelagicus, have been used to approximate the base of zones NN7 and NN8, respectively. Several disconformities disturbing the Pliocene and Miocene intervals of Site 1090 could be determined based on nannofossil distribution although the occurrence of intervals with dissolved nannofloras and low species diversity prevented a reliable age assignment. An acme of small Gephyrocapsa was recognized near the lower/middle Pliocene boundary, close to the NN15-NN16 zonal boundary, presenting an event for further improvement of the calcareous nannofossil biostratigraphy of this interval time. The first occurrence of Pseudoemiliania lacunosa (>4 µm) occurs close to this interval, representing a fairly reliable event to approximate the base of NN15 zone when other biozonal events are absent. A paracme of R. pseudoumbilicus (>7 µm) was detected in the lower Pliocene NN12 and in the upper Miocene NN11. These temporary absences of the species seem to be isochronous between high-latitude and low-middle-latitude areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of the late Miocene-early Pliocene biogenic bloom typically have focused on high-productivity areas in the Indian and Pacific Oceans in order to achieve high resolution samples. Thus there is a paucity of information concerning whether the Atlantic Ocean, in general or low-productivity regions in all three basins experienced this bloom. This study measured the phosphorus mass accumulation rate (PMAR). in five cores from low-productivity regions of the Atlantic and Indian Oceans. All cores exhibit a peak in productivity 4-5.5 Ma, coincident with the Indo-Pacific bloom. This suggests that nutrients were not shifted away from low-productivity regions nor out of the Atlantic Ocean. Instead, it appears that the bloom was caused by an overall increase in nutrient flux into the world oceans. Four of the cores record the bloom's PMAR peak as bimodal, indicating a pulsed increase in phosphorus to the oceans. This suggests that there may have been multiple causes of the biogenic bloom.