932 resultados para Mini-scale method
Resumo:
A small-scale method was developed for the simultaneous determination of γ-HCH, heptachlor, aldrin, dicofol, mirex, endosulfan I, endosulfan II and endosulfan sulphate in soil. The extraction and clean-up steps were combined into one step by transferring soil samples to chromatographic columns prepacked with neutral alumina. The pesticides elution was processed with n-hexane : dichloromethane (7:3) and the concentrated eluate was analysed using gas-liquid chromatography with electron capture detection. Analyses of the in vitro fortified samples with the selected pesticides were performed at three different levels. Mean recoveries for aldrin, γ-HCH and heptachlor, at levels of 2, 10 and 20 ng/g, ranged from 71 to 87%; for dicofol, at levels of 8, 40 and 80 ng/g, ranged from 97 to 103%; for endosulfan I and II, at levels of 5, 25 and 50 ng/g, ranged from 88 to 96%; for mirex, at levels of 6, 30 and 60 ng/g, ranged from 86 to 110%; and for endosulfan sulphate, at levels of 15, 75 and 150 ng/g, ranged from 93 to 104%. The method can be used for rapid determination of these pesticides in soil. © Springer-Verlag 1996.
Resumo:
Polymers have become the reference material for high reliability and performance applications. In this work, a multi-scale approach is proposed to investigate the mechanical properties of polymeric based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, a coupling of a Finite Element Method (FEM) and Molecular Dynamics (MD) modeling in an iterative procedure was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, the previous described multi-scale method computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multi-scale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
Herbicides such as trifluralin, simazine, atrazine, metribuzin and metolachlor are used in Brazilian agriculture. The efficiency of a small scale method for determination of these herbicides and two degradation products (deisopropylatrazine and deethylatrazine) in soil samples was evaluated. The compounds were extracted from soil samples (5 g) with 20 ml of ethyl acetate in a mechanical shaker for 50 min. Following the extraction, the supernatant was dried through anhydrous sodium sulphate, concentrated and analysed by high resolution gas chromatography (HRGC) with thermionic specific detection (TSD). Mean recoveries obtained from soil samples fortified at three different levels ranged from 81 to 115% with relative standard deviation (RSD) values varying from 1.2 to 12.7%. The method detection limits ranged from 0.01 to 0.06 mg kg-1. The methodology was applied using soil samples from farms located near the town of Araraquara, in the State of São Paulo, Brazil.
Resumo:
Objective: Thought–shape fusion (TSF) is a cognitive distortion that has been linked to eating pathology. Two studies were conducted to further explore this phenomenon and to establish the psychometric properties of a French short version of the TSF scale. Method: In Study 1, students (n 5 284) completed questionnaires assessing TSF and related psychopathology. In Study 2, the responses of women with eating disorders (n 5 22) and women with no history of an eating disorder (n 5 23) were compared. Results: The French short version of the TSF scale has a unifactorial structure, with convergent validity with measures of eating pathology, and good internal consistency. Depression, eating pathology, body dissatisfaction, and thought-action fusion emerged as predictors of TSF. Individuals with eating disorders have higher TSF, and more clinically relevant food-related thoughts than do women with no history of an eating disorder. Discussion: This research suggests that the shortened TSF scale can suitably measure this construct, and provides support for the notion that TSF is associated with eating pathology.
Resumo:
Herbicidas tais como trifluralina, simazina, atrazina, metribuzina e metolaclor são usados na agricultura brasileira. A eficiência de um método em pequena escala para a determinação destes herbicidas e dois produtos de degradação em amostras de solo foi avaliada. Os compostos foram extraídos das amostras de solo (5 g) com 20 ml de acetato de etila em agitador mecânico por 50 min. Após a extração, o sobrenadante foi filtrado em sulfato de sódio anidro, concentrado e analisado por cromatografia a gás de alta resolução com detector termiônico específico. Valores médios de recuperação obtidos de amostras de solo fortificadas em três níveis diferentes variaram de 81 a 115 % com valores de desvio padrão relativo entre 1,2 e 12,7 %. Os limites de detecção do método variaram de 0,01 a 0,06 mg kg-1. A metodologia foi aplicada a amostras de solo de fazendas localizadas próximas à cidade de Araraquara, estado de São Paulo, Brasil.
Resumo:
Let us have an indirectly measurable variable which is a function of directly measurable variables. In this survey we present the introduced by us method for analytical representation of its maximum absolute and relative inaccuracy as functions, respectively, of the maximum absolute and of the relative inaccuracies of the directly measurable variables. Our new approach consists of assuming for fixed variables the statistical mean values of the absolute values of the coefficients of influence, respectively, of the absolute and relative inaccuracies of the directly measurable variables in order to determine the analytical form of the maximum absolute and relative inaccuracies of an indirectly measurable variable. Moreover, we give a method for determining the numerical values of the maximum absolute and relative inaccuracies. We define a sample plane of the ideal perfectly accurate experiment and using it we give a universal numerical characteristic – a dimensionless scale for determining the quality (accuracy) of the experiment.
Resumo:
The introduction of phase change material fluid and nanofluid in micro-channel heat sink design can significantly increase the cooling capacity of the heat sink because of the unique features of these two kinds of fluids. To better assist the design of a high performance micro-channel heat sink using phase change fluid and nanofluid, the heat transfer enhancement mechanism behind the flow with such fluids must be completely understood. ^ A detailed parametric study is conducted to further investigate the heat transfer enhancement of the phase change material particle suspension flow, by using the two-phase non-thermal-equilibrium model developed by Hao and Tao (2004). The parametric study is conducted under normal conditions with Reynolds numbers of Re = 90–600 and phase change material particle concentrations of ϵp ≤ 0.25, as well as extreme conditions of very low Reynolds numbers (Re < 50) and high phase change material particle concentration (ϵp = 50%–70%) slurry flow. By using the two newly-defined parameters, named effectiveness factor ϵeff and performance index PI, respectively, it is found that there exists an optimal relation between the channel design parameters L and D, particle volume fraction ϵp, Reynolds number Re, and the wall heat flux qw. The influence of the particle volume fraction ϵp, particle size dp, and the particle viscosity μ p, to the phase change material suspension flow, are investigated and discussed. The model was validated by available experimental data. The conclusions will assist designers in making their decisions that relate to the design or selection of a micro-pump suitable for micro or mini scale heat transfer devices. ^ To understand the heat transfer enhancement mechanism of the nanofluid flow from the particle level, the lattice Boltzmann method is used because of its mesoscopic feature and its many numerical advantages. By using a two-component lattice Boltzmann model, the heat transfer enhancement of the nanofluid is analyzed, through incorporating the different forces acting on the nanoparticles to the two-component lattice Boltzmann model. It is found that the nanofluid has better heat transfer enhancement at low Reynolds numbers, and the Brownian motion effect of the nanoparticles will be weakened by the increase of flow speed. ^
Resumo:
The introduction of phase change material fluid and nanofluid in micro-channel heat sink design can significantly increase the cooling capacity of the heat sink because of the unique features of these two kinds of fluids. To better assist the design of a high performance micro-channel heat sink using phase change fluid and nanofluid, the heat transfer enhancement mechanism behind the flow with such fluids must be completely understood. A detailed parametric study is conducted to further investigate the heat transfer enhancement of the phase change material particle suspension flow, by using the two-phase non-thermal-equilibrium model developed by Hao and Tao (2004). The parametric study is conducted under normal conditions with Reynolds numbers of Re=600-900 and phase change material particle concentrations ¡Ü0.25 , as well as extreme conditions of very low Reynolds numbers (Re < 50) and high phase change material particle concentration (0.5-0.7) slurry flow. By using the two newly-defined parameters, named effectiveness factor and performance index, respectively, it is found that there exists an optimal relation between the channel design parameters, particle volume fraction, Reynolds number, and the wall heat flux. The influence of the particle volume fraction, particle size, and the particle viscosity, to the phase change material suspension flow, are investigated and discussed. The model was validated by available experimental data. The conclusions will assist designers in making their decisions that relate to the design or selection of a micro-pump suitable for micro or mini scale heat transfer devices. To understand the heat transfer enhancement mechanism of the nanofluid flow from the particle level, the lattice Boltzmann method is used because of its mesoscopic feature and its many numerical advantages. By using a two-component lattice Boltzmann model, the heat transfer enhancement of the nanofluid is analyzed, through incorporating the different forces acting on the nanoparticles to the two-component lattice Boltzmann model. It is found that the nanofluid has better heat transfer enhancement at low Reynolds numbers, and the Brownian motion effect of the nanoparticles will be weakened by the increase of flow speed.
Resumo:
Objectives: To evaluate the bonding interface in experimentally weakened roots reinforced with adhesive restorative materials and quartz fibre posts, varying the light-exposure time of the composite resin used for root reinforcement. Methods: Twelve extracted human maxillary incisors teeth were used. The crowns were removed and the roots were endodontically treated. After post space preparation, the roots were assigned to four groups. The thickness of the root dentine was reduced and adhesively restored with composite resin light-activated through a translucent fibre post for either 40 s (group 1), 80 s (group 2) or 120 s (group 3). In the case of control (group 4), the roots were not weakened. One day after post cementation, the specimens were sectioned transversally in three slices and processed for scanning electron microscopic analysis to observe bonding interface formation, quality of the hybrid layer and density of resin tags using a four-step scale method. Results: Formation of a hybrid layer and resin tags were evident in all groups. There was no statistically (p > 0.05) significant difference between the regions analysed in each group (Friedman test) and between groups in each section depth (Kruskal-Wallis test). Furthermore, comparison of the flared/reinforced groups showed that the different time;; used for composite resin cure did not affect the results significantly (Kruskal-Wallis test, p = 0.2139). Conclusions: Different light-exposure times used for composite resin polymerisation during root canal reinforcement did not affect significantly the formation and quality of the dentine/adhesive/composite resin bonding interface. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This Master s Thesis proposes the application of Data Envelopment Analysis DEA to evaluate the performance of sales teams, based on a study of their coverage areas. Data was collected from the company contracted to distribute the products in the state of Ceará. Analyses of thirteen sales coverage areas were performed considering first the output-oriented constant return to scale method (CCR-O), then this method with assurance region (AR-O-C) and finally the method of variable returns to scale with assurance region (AR-O-V). The method used in the first approach is shown to be inappropriate for this study, since it inconveniently generates zero-valued weights, allowing that an area under evaluation obtain the maximal score by not producing. Using weight restrictions, through the assurance region methods AR-O-C and AR-O-V, decreasing returns to scale are identified, meaning that the improvement in performance is not proportional to the size of the areas being analyzed. Observing data generated by the analysis, a study is carried out, aiming to design improvement goals for the inefficient areas. Complementing this study, GDP data for each area was compared with scores obtained using AR-O-V analysis. The results presented in this work show that DEA is a useful methodology for assessing sales team performance and that it may contribute to improvements on the quality of the management process.
Resumo:
In this work we present the principal fractals, their caracteristics, properties abd their classification, comparing them to Euclidean Geometry Elements. We show the importance of the Fractal Geometry in the analysis of several elements of our society. We emphasize the importance of an appropriate definition of dimension to these objects, because the definition we presently know doesn t see a satisfactory one. As an instrument to obtain these dimentions we present the Method to count boxes, of Hausdorff- Besicovich and the Scale Method. We also study the Percolation Process in the square lattice, comparing it to percolation in the multifractal subject Qmf, where we observe som differences between these two process. We analize the histogram grafic of the percolating lattices versus the site occupation probability p, and other numerical simulations. And finaly, we show that we can estimate the fractal dimension of the percolation cluster and that the percolatin in a multifractal suport is in the same universality class as standard percolation. We observe that the area of the blocks of Qmf is variable, pc is a function of p which is related to the anisotropy of Qmf
Resumo:
OBJETIVO: Analisar, comparativamente, a obtenção minimamente invasiva com o uso do MINI-HARVEST® e com instrumental tradicional adaptado. MÉTODO: de junho de 1996 a janeiro de 1999, 63 pacientes submetidos à cirurgia de revascularização do miocárdio tiveram suas veias safenas retiradas segundo técnica minimamente invasiva. Nos 30 primeiros pacientes da série utilizou-se método de visão direta com auxílio de dois afastadores de Langenbeck, e nos 33 restantes utilizou-se o MINI-HARVEST®. RESULTADOS: A idade média dos pacientes era de 61 ± 8,75 anos, sendo 52 homens e 11 mulheres. Quarenta e cinco pacientes eram diabéticos, 45 apresentavam sobrepeso/obesidade, 25 eram tabagistas ativos, 32 apresentavam história pregressa de infarto do miocárdio. O tempo médio de retirada da veia safena com afastadores Langenbeck foi de 34,2 ± 8,14 minutos e com o MINI-HARVEST® de 39,20 ± 9,12 minutos. A extensão de veia retirada foi similar nos dois grupos, variando de 10 a 30 cm. Houve uma deiscência superficial no grupo com afastadores de Langenbeck. Houve necessidade de reversão para método tradicional de retirada em dois casos do grupo MINI-HARVEST® e um do grupo Langenbeck. A incidência de infarto transoperatório foi 4,5% (três) no grupo Langenbeck e 3,1%(dois) no grupo MINI-HARVEST®. CONCLUSÕES: Podemos concluir que o método de obtenção de veia safena minimamente invasivo sob visão direta é efetivo e seguro, tanto com o uso de instrumentos tradicionais adaptados para este fim, como com afastadores especialmente constituídos, ressaltando-se que o MINI-HARVEST® dispensa a presença de um auxiliar.
Resumo:
In the present study an evaluation was made of a method for the determination of organochlorine pesticide residues in ethoxylated lanolin. Samples were homogenized with Celite, transferred to chromatographic columns, prepacked with silica gel deactivated to 10%. The pesticide elution was processed with n-hexane-dichloromethane and the concentrated eluate was analyzed using gas-liquid chromatography (GC) with electron capture detection (ECD). The composition of the elution solvent was a significant factor for the recovery of the pesticides. Mean recoveries obtained for fortified samples ranged from 87 to 94% for p,p'-DDE, dieldrin, endrin, p,p'-DDD and p,p'-DDT. Optimization of the experimental conditions resulted in a small-scale method that combines extraction and cleanup in a single step. (C) 2000 Elsevier B.V. S.A. All rights reserved.
Resumo:
By using the multiple scale method with the simultaneous introduction of multiple times, we study the propagation of long surface-waves in a shallow inviscid fluid. As a consequence of the requirements of scale invariance and absence of secular terms in each order of the perturbative expansion, we show that the Korteweg-de Vries hierarchy equations do play a role in the description of such waves. Finally, we show that this procedure of eliminating secularities is closely related to the renormalization technique introduced by Kodama and Taniuti. © 1995 American Institute of Physics.