969 resultados para Microwave ovens.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is recognized that breast feeding is an alternative means of transmission of Chagas disease. However, thermal treatment of milk can prevent this occurrence. As domestic microwave ovens are becoming commonplace, the efficacy of microwave thermal treatment in inactivating Trypanosoma cruzi trypomastigotes in human milk was tested. Human milk samples infected with T. cruzi trypomastigotes (Y strain) from laboratory-infected mice, were heated to 63 °C in a domestic microwave oven (2 450 MHz, 700 W). Microscopical and serological examinations demonstrated that none of the animals inoculated orally or intraperitoneally with infected milk which had been treated, got the infection, while those inoculated with untreated, infected milk, became infected. It was concluded that the simple treatment prescribed, which can easily be done at home, was effective in inactivating T. cruzi trypomastigotes contained in human milk.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The main aim of this study was to develop dense and conducting SnO 2 ceramics without precipitated phases on the grain boundaries, which was verified using field emission scanning microscopy (FE-SEM) coupled with an energy-dispersive X-ray spectroscopy (FE-SEM/EDS). Two sample groups were investigated, where the first sample group was doped with zinc while the second one was doped with cobalt. The ceramics were prepared using the oxides mixture method and the sintering was carried out in a conventional muffle oven as well as in microwave oven. The results obtained were found to be similar regarding the relative density for the two sintering methods while time and temperature gains were observed for the microwave sintering method. The relative densities obtained were nearly 95%, for the two sintering methods. Concerning the electrical characterization measurements-electric field x current density as well as the environment temperature, the ceramics obtained through the conventional sintering method presented non-ohmic behavior. For the microwave sintered ceramics, we observed an ohmic behavior with electrical resistivity of 1.3 Ωcm for the samples doped with ZnO/Nb 2O 5 and 2.5 Ωcm for that of the samples doped with CoO/Nb 2O 5. The FE-SEM/EDS results for the microwave sintered ceramics indicated a structure with a reduced number of pores and other phases segregated at the grain boundaries, which leads to a better conductive ceramic than the conventional oven sintered samples. The dilatometry analysis determined the muffle sintering temperature and the difference between the densification of cobalt and zinc oxides. The addition of niobium oxide resulted in the decrease in resistivity, which thus led us to conclude that it is possible to obtain dense ceramics with low electrical resistivity based on SnO 2 using commercial oxides by the oxides mixture technique and the microwave oven sintering method. Copyright © 2011 American Scientific Publishers All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Caremaps [Clinical pathways] are like microwave ovens: five years from now, members of all disciplines will marvel at how they ever got along without them. Of course there will always be some that refuse to accept innovation or who are technophobic. Most people, however, will readily incorporate useful, practical new products into their daily lives.' Zander [1]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aplicación práctica del método de análisis funcional de productos industriales. Análisis funcional para un microondas doméstico y alternativas de diseño derivadas

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solid-phase organic synthesis (SPOS) has been considered the main strategy for the construction of combinatorial libraries, because its simplicity leads to faster synthetic procedures. In addition to that, a series of reports in the specialized literature show great advantages in the use of microwave activation, when compared to classical heating, for instance: shorter reaction times, in some cases from several hours to a few minutes, increase of selectivity and product yields, energy economy and reduction and/or elimination of solvent. This review describes the use of microwave ovens/reactors in solid phase organic synthesis, describing the advantages, equipment and reactions using both techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The microwave oven became an important source of heating for many laboratory procedures including accelerating organic reactions. Reactions that require long reflux times can sometimes be carried out in a few hours or minutes in a conventional microwave oven. However, longer reflux times can be troublesome since domestic microwave ovens are not prepared for these harsh conditions. This technical note presents our finding on heterogeneous catalysis transesterification reactions between b-keto-esters and carbohydrate derivatives under heating or microwave irradiation using an adapted domestic microwave oven.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Technological developments in microprocessors and ICT landscape have made a shift to a new era where computing power is embedded in numerous small distributed objects and devices in our everyday lives. These small computing devices are ne-tuned to perform a particular task and are increasingly reaching our society at every level. For example, home appliances such as programmable washing machines, microwave ovens etc., employ several sensors to improve performance and convenience. Similarly, cars have on-board computers that use information from many di erent sensors to control things such as fuel injectors, spark plug etc., to perform their tasks e ciently. These individual devices make life easy by helping in taking decisions and removing the burden from their users. All these objects and devices obtain some piece of information about the physical environment. Each of these devices is an island with no proper connectivity and information sharing between each other. Sharing of information between these heterogeneous devices could enable a whole new universe of innovative and intelligent applications. The information sharing between the devices is a diffcult task due to the heterogeneity and interoperability of devices. Smart Space vision is to overcome these issues of heterogeneity and interoperability so that the devices can understand each other and utilize services of each other by information sharing. This enables innovative local mashup applications based on shared data between heterogeneous devices. Smart homes are one such example of Smart Spaces which facilitate to bring the health care system to the patient, by intelligent interconnection of resources and their collective behavior, as opposed to bringing the patient into the health system. In addition, the use of mobile handheld devices has risen at a tremendous rate during the last few years and they have become an essential part of everyday life. Mobile phones o er a wide range of different services to their users including text and multimedia messages, Internet, audio, video, email applications and most recently TV services. The interactive TV provides a variety of applications for the viewers. The combination of interactive TV and the Smart Spaces could give innovative applications that are personalized, context-aware, ubiquitous and intelligent by enabling heterogeneous systems to collaborate each other by sharing information between them. There are many challenges in designing the frameworks and application development tools for rapid and easy development of these applications. The research work presented in this thesis addresses these issues. The original publications presented in the second part of this thesis propose architectures and methodologies for interactive and context-aware applications, and tools for the development of these applications. We demonstrated the suitability of our ontology-driven application development tools and rule basedapproach for the development of dynamic, context-aware ubiquitous iTV applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The frequency selective surfaces, or FSS (Frequency Selective Surfaces), are structures consisting of periodic arrays of conductive elements, called patches, which are usually very thin and they are printed on dielectric layers, or by openings perforated on very thin metallic surfaces, for applications in bands of microwave and millimeter waves. These structures are often used in aircraft, missiles, satellites, radomes, antennae reflector, high gain antennas and microwave ovens, for example. The use of these structures has as main objective filter frequency bands that can be broadcast or rejection, depending on the specificity of the required application. In turn, the modern communication systems such as GSM (Global System for Mobile Communications), RFID (Radio Frequency Identification), Bluetooth, Wi-Fi and WiMAX, whose services are highly demanded by society, have required the development of antennas having, as its main features, and low cost profile, and reduced dimensions and weight. In this context, the microstrip antenna is presented as an excellent choice for communications systems today, because (in addition to meeting the requirements mentioned intrinsically) planar structures are easy to manufacture and integration with other components in microwave circuits. Consequently, the analysis and synthesis of these devices mainly, due to the high possibility of shapes, size and frequency of its elements has been carried out by full-wave models, such as the finite element method, the method of moments and finite difference time domain. However, these methods require an accurate despite great computational effort. In this context, computational intelligence (CI) has been used successfully in the design and optimization of microwave planar structures, as an auxiliary tool and very appropriate, given the complexity of the geometry of the antennas and the FSS considered. The computational intelligence is inspired by natural phenomena such as learning, perception and decision, using techniques such as artificial neural networks, fuzzy logic, fractal geometry and evolutionary computation. This work makes a study of application of computational intelligence using meta-heuristics such as genetic algorithms and swarm intelligence optimization of antennas and frequency selective surfaces. Genetic algorithms are computational search methods based on the theory of natural selection proposed by Darwin and genetics used to solve complex problems, eg, problems where the search space grows with the size of the problem. The particle swarm optimization characteristics including the use of intelligence collectively being applied to optimization problems in many areas of research. The main objective of this work is the use of computational intelligence, the analysis and synthesis of antennas and FSS. We considered the structures of a microstrip planar monopole, ring type, and a cross-dipole FSS. We developed algorithms and optimization results obtained for optimized geometries of antennas and FSS considered. To validate results were designed, constructed and measured several prototypes. The measured results showed excellent agreement with the simulated. Moreover, the results obtained in this study were compared to those simulated using a commercial software has been also observed an excellent agreement. Specifically, the efficiency of techniques used were CI evidenced by simulated and measured, aiming at optimizing the bandwidth of an antenna for wideband operation or UWB (Ultra Wideband), using a genetic algorithm and optimizing the bandwidth, by specifying the length of the air gap between two frequency selective surfaces, using an optimization algorithm particle swarm

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Scanning electron microscopy (SEM) was used to investigated the effects of volatile solvents (such as water, propanone, ethanol, methanol or ethyl ether), treatment and drying processes, microwave ovens, drying ovens, and vacuum desiccators or freeze driers, on silica morphology. Silica gel was obtained from diluted sodium silicate (1:5 w/w SiO2:H2O). The results showed that the drying process based on freeze drying is more efficient for structural conservation of the precipitate. Treatment with volatile solvents does not change the shape of the aggregates, but has an important role in the determination of aggregate surface roughness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work develops and optimizes a method to determine copper in samples of feces and fish feed by graphite furnace atomic absorption spectrometry (GFAAS) through the direct introduction of slurries of the samples into the spectrometer's graphite tube coated internally with metallic rhodium and tungsten carbide that acts as chemical modifiers. The limits of detection (LOD) and quantification (LOQ) calculated for 20 readings of the blank of the standard slurries (0.50% m/v of feces or feed devoid of copper) were 0.24 and 0.79 μg L -1 for the standard feces slurries and 0.26 and 0.87 μg L -1 for the standard feed slurries. The proposed method was applied in studies of absorption of copper in different fish feeds and their results proved compatible with that obtained from samples mineralized by acid digestion using microwave oven. © Springer Science+Business Media, LLC 2008.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To evaluate the variations of temperature in 2 models of domestic micro-wave ovens, single emission (F 1) and dual emission of waves (F 2), to investigate areas of higher and lower intensity of the electromagnetic field. Materials and methods: A beaker containing water (60mL, 26°C) was irradiated into each of 5 positions (front - P 1; right - P 2; posterior - P 3; left - P 4; central - P 5) within each oven (900W/ 2min). To evaluate the effectiveness of disinfection in F 2, Bacillus subtilis suspension was irradiated in each of the 5 positions for 2, 4 and 6minutes. Data were analyzed by Kruskal-Wallis and nonparametric multiple comparisons at 5% significance level. Results: 84.80°C (F 1) and 92.01°C (F 2) were mean levels of temperature. For F 1, the positions P 1, P 2, P 3 and P 5 showed similar values among them and upper than P 4, while for F 2, the positions P 1, P 2 and P 4 were similar among them and upper than P 3 and P 5. Kruskal-Wallis test found significant differences between positions and models of ovens (p<0.05). It was observed that P 2 promoted bacterial death from 4min of irradiation, while the other positions promoted disinfection at 6min of irradiation. Conclusion: The protocols of position and time specified for the various procedures in microwave ovens can be different according to the characteristics of each device due to the electromagnetic field heterogeneity. © 2011 Sociedade Portuguesa de Estomatologia e Medicina Dentária.