840 resultados para Microstructure noise
Resumo:
The attached file is created with Scientific Workplace Latex
Resumo:
Le prix efficient est latent, il est contaminé par les frictions microstructurelles ou bruit. On explore la mesure et la prévision de la volatilité fondamentale en utilisant les données à haute fréquence. Dans le premier papier, en maintenant le cadre standard du modèle additif du bruit et le prix efficient, on montre qu’en utilisant le volume de transaction, les volumes d’achat et de vente, l’indicateur de la direction de transaction et la différence entre prix d’achat et prix de vente pour absorber le bruit, on améliore la précision des estimateurs de volatilité. Si le bruit n’est que partiellement absorbé, le bruit résiduel est plus proche d’un bruit blanc que le bruit original, ce qui diminue la misspécification des caractéristiques du bruit. Dans le deuxième papier, on part d’un fait empirique qu’on modélise par une forme linéaire de la variance du bruit microstructure en la volatilité fondamentale. Grâce à la représentation de la classe générale des modèles de volatilité stochastique, on explore la performance de prévision de différentes mesures de volatilité sous les hypothèses de notre modèle. Dans le troisième papier, on dérive de nouvelles mesures réalizées en utilisant les prix et les volumes d’achat et de vente. Comme alternative au modèle additif standard pour les prix contaminés avec le bruit microstructure, on fait des hypothèses sur la distribution du prix sans frictions qui est supposé borné par les prix de vente et d’achat.
Resumo:
Nous développons dans cette thèse, des méthodes de bootstrap pour les données financières de hautes fréquences. Les deux premiers essais focalisent sur les méthodes de bootstrap appliquées à l’approche de "pré-moyennement" et robustes à la présence d’erreurs de microstructure. Le "pré-moyennement" permet de réduire l’influence de l’effet de microstructure avant d’appliquer la volatilité réalisée. En se basant sur cette ap- proche d’estimation de la volatilité intégrée en présence d’erreurs de microstructure, nous développons plusieurs méthodes de bootstrap qui préservent la structure de dépendance et l’hétérogénéité dans la moyenne des données originelles. Le troisième essai développe une méthode de bootstrap sous l’hypothèse de Gaussianité locale des données financières de hautes fréquences. Le premier chapitre est intitulé: "Bootstrap inference for pre-averaged realized volatility based on non-overlapping returns". Nous proposons dans ce chapitre, des méthodes de bootstrap robustes à la présence d’erreurs de microstructure. Particulièrement nous nous sommes focalisés sur la volatilité réalisée utilisant des rendements "pré-moyennés" proposés par Podolskij et Vetter (2009), où les rendements "pré-moyennés" sont construits sur des blocs de rendements à hautes fréquences consécutifs qui ne se chevauchent pas. Le "pré-moyennement" permet de réduire l’influence de l’effet de microstructure avant d’appliquer la volatilité réalisée. Le non-chevauchement des blocs fait que les rendements "pré-moyennés" sont asymptotiquement indépendants, mais possiblement hétéroscédastiques. Ce qui motive l’application du wild bootstrap dans ce contexte. Nous montrons la validité théorique du bootstrap pour construire des intervalles de type percentile et percentile-t. Les simulations Monte Carlo montrent que le bootstrap peut améliorer les propriétés en échantillon fini de l’estimateur de la volatilité intégrée par rapport aux résultats asymptotiques, pourvu que le choix de la variable externe soit fait de façon appropriée. Nous illustrons ces méthodes en utilisant des données financières réelles. Le deuxième chapitre est intitulé : "Bootstrapping pre-averaged realized volatility under market microstructure noise". Nous développons dans ce chapitre une méthode de bootstrap par bloc basée sur l’approche "pré-moyennement" de Jacod et al. (2009), où les rendements "pré-moyennés" sont construits sur des blocs de rendements à haute fréquences consécutifs qui se chevauchent. Le chevauchement des blocs induit une forte dépendance dans la structure des rendements "pré-moyennés". En effet les rendements "pré-moyennés" sont m-dépendant avec m qui croît à une vitesse plus faible que la taille d’échantillon n. Ceci motive l’application d’un bootstrap par bloc spécifique. Nous montrons que le bloc bootstrap suggéré par Bühlmann et Künsch (1995) n’est valide que lorsque la volatilité est constante. Ceci est dû à l’hétérogénéité dans la moyenne des rendements "pré-moyennés" au carré lorsque la volatilité est stochastique. Nous proposons donc une nouvelle procédure de bootstrap qui combine le wild bootstrap et le bootstrap par bloc, de telle sorte que la dépendance sérielle des rendements "pré-moyennés" est préservée à l’intérieur des blocs et la condition d’homogénéité nécessaire pour la validité du bootstrap est respectée. Sous des conditions de taille de bloc, nous montrons que cette méthode est convergente. Les simulations Monte Carlo montrent que le bootstrap améliore les propriétés en échantillon fini de l’estimateur de la volatilité intégrée par rapport aux résultats asymptotiques. Nous illustrons cette méthode en utilisant des données financières réelles. Le troisième chapitre est intitulé: "Bootstrapping realized covolatility measures under local Gaussianity assumption". Dans ce chapitre nous montrons, comment et dans quelle mesure on peut approximer les distributions des estimateurs de mesures de co-volatilité sous l’hypothèse de Gaussianité locale des rendements. En particulier nous proposons une nouvelle méthode de bootstrap sous ces hypothèses. Nous nous sommes focalisés sur la volatilité réalisée et sur le beta réalisé. Nous montrons que la nouvelle méthode de bootstrap appliquée au beta réalisé était capable de répliquer les cummulants au deuxième ordre, tandis qu’il procurait une amélioration au troisième degré lorsqu’elle est appliquée à la volatilité réalisée. Ces résultats améliorent donc les résultats existants dans cette littérature, notamment ceux de Gonçalves et Meddahi (2009) et de Dovonon, Gonçalves et Meddahi (2013). Les simulations Monte Carlo montrent que le bootstrap améliore les propriétés en échantillon fini de l’estimateur de la volatilité intégrée par rapport aux résultats asymptotiques et les résultats de bootstrap existants. Nous illustrons cette méthode en utilisant des données financières réelles.
Resumo:
This dissertation contains four essays that all share a common purpose: developing new methodologies to exploit the potential of high-frequency data for the measurement, modeling and forecasting of financial assets volatility and correlations. The first two chapters provide useful tools for univariate applications while the last two chapters develop multivariate methodologies. In chapter 1, we introduce a new class of univariate volatility models named FloGARCH models. FloGARCH models provide a parsimonious joint model for low frequency returns and realized measures, and are sufficiently flexible to capture long memory as well as asymmetries related to leverage effects. We analyze the performances of the models in a realistic numerical study and on the basis of a data set composed of 65 equities. Using more than 10 years of high-frequency transactions, we document significant statistical gains related to the FloGARCH models in terms of in-sample fit, out-of-sample fit and forecasting accuracy compared to classical and Realized GARCH models. In chapter 2, using 12 years of high-frequency transactions for 55 U.S. stocks, we argue that combining low-frequency exogenous economic indicators with high-frequency financial data improves the ability of conditionally heteroskedastic models to forecast the volatility of returns, their full multi-step ahead conditional distribution and the multi-period Value-at-Risk. Using a refined version of the Realized LGARCH model allowing for time-varying intercept and implemented with realized kernels, we document that nominal corporate profits and term spreads have strong long-run predictive ability and generate accurate risk measures forecasts over long-horizon. The results are based on several loss functions and tests, including the Model Confidence Set. Chapter 3 is a joint work with David Veredas. We study the class of disentangled realized estimators for the integrated covariance matrix of Brownian semimartingales with finite activity jumps. These estimators separate correlations and volatilities. We analyze different combinations of quantile- and median-based realized volatilities, and four estimators of realized correlations with three synchronization schemes. Their finite sample properties are studied under four data generating processes, in presence, or not, of microstructure noise, and under synchronous and asynchronous trading. The main finding is that the pre-averaged version of disentangled estimators based on Gaussian ranks (for the correlations) and median deviations (for the volatilities) provide a precise, computationally efficient, and easy alternative to measure integrated covariances on the basis of noisy and asynchronous prices. Along these lines, a minimum variance portfolio application shows the superiority of this disentangled realized estimator in terms of numerous performance metrics. Chapter 4 is co-authored with Niels S. Hansen, Asger Lunde and Kasper V. Olesen, all affiliated with CREATES at Aarhus University. We propose to use the Realized Beta GARCH model to exploit the potential of high-frequency data in commodity markets. The model produces high quality forecasts of pairwise correlations between commodities which can be used to construct a composite covariance matrix. We evaluate the quality of this matrix in a portfolio context and compare it to models used in the industry. We demonstrate significant economic gains in a realistic setting including short selling constraints and transaction costs.
Resumo:
Carrying out information about the microstructure and stress behaviour of ferromagnetic steels, magnetic Barkhausen noise (MBN) has been used as a basis for effective non-destructive testing methods, opening new areas in industrial applications. One of the factors that determines the quality and reliability of the MBN analysis is the way information is extracted from the signal. Commonly, simple scalar parameters are used to characterize the information content, such as amplitude maxima and signal root mean square. This paper presents a new approach based on the time-frequency analysis. The experimental test case relates the use of MBN signals to characterize hardness gradients in a AISI4140 steel. To that purpose different time-frequency (TFR) and time-scale (TSR) representations such as the spectrogram, the Wigner-Ville distribution, the Capongram, the ARgram obtained from an AutoRegressive model, the scalogram, and the Mellingram obtained from a Mellin transform are assessed. It is shown that, due to nonstationary characteristics of the MBN, TFRs can provide a rich and new panorama of these signals. Extraction techniques of some time-frequency parameters are used to allow a diagnostic process. Comparison with results obtained by the classical method highlights the improvement on the diagnosis provided by the method proposed.
Resumo:
Sigma phase is a deleterious one which can be formed in duplex stainless steels during heat treatment or welding. Aiming to accompany this transformation, ferrite and sigma percentage and hardness were measured on samples of a UNS S31803 duplex stainless steel submitted to heat treatment. These results were compared to measurements obtained from ultrasound and eddy current techniques, i.e., velocity and impedance, respectively. Additionally, backscattered signals produced by wave propagation were acquired during ultrasonic inspection as well as magnetic Barkhausen noise during magnetic inspection. Both signal types were processed via a combination of detrended-fluctuation analysis (DFA) and principal component analysis (PCA). The techniques used were proven to be sensitive to changes in samples related to sigma phase formation due to heat treatment. Furthermore, there is an advantage using these methods since they are nondestructive. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The present work presents measurements of the Magnetic Barkhausen Noise (MBN) in commercial AISI/SAE 1005 steel samples for different grain sizes. The correlation between the shape of the MBN jump and the grain size is established. The results show the existence of types of MBN jumps. Also, the outcome shows that one of these types of MBN jumps become ""squarer"" with the decrease of grain size.
Resumo:
Two steel sheets, one with 5% Ni and another with 10% Ni, were submitted to carburization and quenching, obtaining a microstructure with martensite and retained austenite. These steels were characterized with magnetic Barkhausen noise (MBN). The Barkhausen signal is distinctively different for the carburized and quenched samples. The carburized and quenched samples present higher coercive field than the annealed samples. X-ray diffraction data indicated that the carburized and quenched samples have high density of dislocations, a consequence of the martensitic transformation.
Resumo:
Due to the imprecise nature of biological experiments, biological data is often characterized by the presence of redundant and noisy data. This may be due to errors that occurred during data collection, such as contaminations in laboratorial samples. It is the case of gene expression data, where the equipments and tools currently used frequently produce noisy biological data. Machine Learning algorithms have been successfully used in gene expression data analysis. Although many Machine Learning algorithms can deal with noise, detecting and removing noisy instances from the training data set can help the induction of the target hypothesis. This paper evaluates the use of distance-based pre-processing techniques for noise detection in gene expression data classification problems. This evaluation analyzes the effectiveness of the techniques investigated in removing noisy data, measured by the accuracy obtained by different Machine Learning classifiers over the pre-processed data.
Resumo:
We investigate the dynamics of a resistively shunted Josephson junction. We compute the Josephson frequency and the generalized impedances for a variety of the parameters, particularly with relevance to predicting the measurable effects of zero-temperature current noise in the resistor.
Resumo:
We show theoretically and experimentally that scattered light by thermal phonons inside a second-order nonlinear crystal is the source of additional phase noise observed in optical parametric oscillators. This additional phase noise reduces the quantum correlations and has hitherto hindered the direct production of multipartite entanglement in a single nonlinear optical system. We cooled the nonlinear crystal and observed a reduction in the extra noise. Our treatment of this noise can be successfully applied to different systems in the literature.
Resumo:
Noise is an intrinsic feature of population dynamics and plays a crucial role in oscillations called phase-forgetting quasicycles by converting damped into sustained oscillations. This function of noise becomes evident when considering Langevin equations whose deterministic part yields only damped oscillations. We formulate here a consistent and systematic approach to population dynamics, leading to a Fokker-Planck equation and the associate Langevin equations in accordance with this conceptual framework, founded on stochastic lattice-gas models that describe spatially structured predator-prey systems. Langevin equations in the population densities and predator-prey pair density are derived in two stages. First, a birth-and-death stochastic process in the space of prey and predator numbers and predator-prey pair number is obtained by a contraction method that reduces the degrees of freedom. Second, a van Kampen expansion in the inverse of system size is then performed to get the Fokker-Planck equation. We also study the time correlation function, the asymptotic behavior of which is used to characterize the transition from the cyclic coexistence of species to the ordinary coexistence.
Sensitivity to noise and ergodicity of an assembly line of cellular automata that classifies density
Resumo:
We investigate the sensitivity of the composite cellular automaton of H. Fuks [Phys. Rev. E 55, R2081 (1997)] to noise and assess the density classification performance of the resulting probabilistic cellular automaton (PCA) numerically. We conclude that the composite PCA performs the density classification task reliably only up to very small levels of noise. In particular, it cannot outperform the noisy Gacs-Kurdyumov-Levin automaton, an imperfect classifier, for any level of noise. While the original composite CA is nonergodic, analyses of relaxation times indicate that its noisy version is an ergodic automaton, with the relaxation times decaying algebraically over an extended range of parameters with an exponent very close (possibly equal) to the mean-field value.
Resumo:
Positional information in developing embryos is specified by spatial gradients of transcriptional regulators. One of the classic systems for studying this is the activation of the hunchback (hb) gene in early fruit fly (Drosophila) segmentation by the maternally-derived gradient of the Bicoid (Bcd) protein. Gene regulation is subject to intrinsic noise which can produce variable expression. This variability must be constrained in the highly reproducible and coordinated events of development. We identify means by which noise is controlled during gene expression by characterizing the dependence of hb mRNA and protein output noise on hb promoter structure and transcriptional dynamics. We use a stochastic model of the hb promoter in which the number and strength of Bcd and Hb (self-regulatory) binding sites can be varied. Model parameters are fit to data from WT embryos, the self-regulation mutant hb(14F), and lacZ reporter constructs using different portions of the hb promoter. We have corroborated model noise predictions experimentally. The results indicate that WT (self-regulatory) Hb output noise is predominantly dependent on the transcription and translation dynamics of its own expression, rather than on Bcd fluctuations. The constructs and mutant, which lack self-regulation, indicate that the multiple Bcd binding sites in the hb promoter (and their strengths) also play a role in buffering noise. The model is robust to the variation in Bcd binding site number across a number of fly species. This study identifies particular ways in which promoter structure and regulatory dynamics reduce hb output noise. Insofar as many of these are common features of genes (e. g. multiple regulatory sites, cooperativity, self-feedback), the current results contribute to the general understanding of the reproducibility and determinacy of spatial patterning in early development.