968 resultados para Microstrip array antenna
Resumo:
A new microstrip antenna element is described which exhibits polarization agility. This is achieved by employing a T-slot radiator which is driven by the edge fields of a balanced microstrip line. The balanced line can support two propagating modes. namely. an even mode and an odd mode, and be switching between these modes. the orthogonal arms of the T-slot radiator are separately excited thus forming orthogonally polarized radiated fields. A nucrostrip patch antenna, which displays polarization agility using the sane mechanism, is also described
Resumo:
This paper reports on the design and development of a dividing/phasing network for a compact switched-beam array antenna for Land-vehicle mobile satellite communications, The device is formed by a switched radial divider/combiner and 1-bit phase shifters and generates a sufficient number of beams for the proper satellite tracking.
Resumo:
[1] In this paper a detailed design, development and performances of a 5 GHz microstrip Yagi antenna, which uses a two-dimensional (2-D) electromagnetic band gap (EBG) structure in the ground plane, are presented. The results indicate that the use of the EBG structure improves the radiation pattern of the antenna. The cross polarization is suppressed by properly choosing the period and dimensions of EBGs. Also, the broadside gain is improved in comparison with the analogous antenna without the EBGs.
Resumo:
compact multihand planar octagonal-shaped microstrip antenna simultaneously suitable for mobile communication and blue tooth application is presented. The antenna provides sufficient isolation benveen the two operating bands and an area reduction of -29 % with respect to a circular patch operating in the same band
Resumo:
An arrow-shaped microstrip antenna with a pair of narrow slots embedded near the non-radiating edges gives wide impedance bandwidth. The experimental and simulated (!E3D) results show that antenna bandwidth is -3.5 times that of a conventional patch with the added advantage of reduced antenna size. The radiation characteristics are found to he uniform throughout the operating band
Resumo:
The paper proposes an octagon shaped Microstrip Patch Antenna suitable for dual band applications. The striking features of this compact, planar antenna are sufficient isolation between the two operating bands and an area reduction of - 29% in comparison to a conventional circular patch antenna operating in the same band
Resumo:
The recent boom in wireless communication industry, especially in the area of cellular telephony and wireless data communication, has led to the increased demand for multi band antennas. In such applications the issues to be addressed are, wide bandwidth and gain, while striving for miniature geometry. A dual frequency configuration useful in GSM1800 and Blue tooth, is one that operates with similar properties, both in terms of reflection and radiation characteristics, in the two bands of interest. Dual frequency operations can be realized by exciting the Microstrip Patch Antenna (MPA) using a single feed [1] or dual feed [2]. In this paper, Conformal FDTD[3] method with Perfect Magnetic Conductor (PMC) applied along the plane of symmetry [4] is used to study the characteristics of an Octagonal MPA. The theoretical results are compared against the experimental and IE3D™ simulated results
Resumo:
A dual port dual polarized octagonal microstrip patch antenna suitable for dual band applications is discussed theoretically and experimentally. The antenna exhibits good impedance bandwidth, gain and broad radiation patterns. Parameters predicted by the Conformal Finite Difference Time Domain algorithm show good agreement with the simulated results and experimental observations
Resumo:
Antennas and Propagation, IEEE Transactions on,VOL 48,issue 4,pp 636
Resumo:
A phased-array antenna with switched-beam elements used to combat interference in an indoor wireless communication system is described. The array uses I-bit phase shifters applied to its elements in order to point its main beam in a desired direction and internal switching of elements in order to form nulls towards interference. The array's capability of suppressing interference is verified by studying its radiation patterns and by performing interference-rejection experiments in an indoor multipath environment. (c) 2005 Wiley Periodicals, Inc.
Resumo:
This article presents an array antenna with beam-steering capability in azimuth over a wide frequency band using real-valued weighting coefficients that can be realized in practice by amplifiers or attenuators. The described beamforming scheme relies on a 2D (instead of 1D) array structure in order to make sure that there are enough degrees of freedom to realize a given radiation pattern in both the angular and frequency domains. In the presented approach, weights are determined using an inverse discrete Fourier transform (IDFT) technique by neglecting the mutual coupling between array elements. Because of the presence of mutual coupling, the actual array produces a radiation pattern with increased side-lobe levels. In order to counter this effect, the design aims to realize the initial radiation pattern with a lower side-lobe level. This strategy is demonstrated in the design example of 4 X 4 element array. (C) 2005 Wiley Periodicals. Inc.