987 resultados para MiR-205
Resumo:
The treatment of high-risk prostate cancer (HRPCa) is a tremendous challenge for uro-oncologists. The identification of predictive moleculobiological markers allowing risk assessment of lymph node metastasis and systemic progression is essential in establishing effective treatment. In the current study, we investigate the prognostic potential of miR-205 in HRPCa study and validation cohorts, setting defined clinical endpoints for both. We demonstrate miR-205 to be significantly down-regulated in over 70% of the HRPCa samples analysed and that reconstitution of miR-205 causes inhibition of proliferation and invasiveness in prostate cancer (PCa) cell lines. Additionally, miR-205 is increasingly down-regulated in lymph node metastases compared to the primary tumour indicating that miR-205 plays a role in migration of PCa cells from the original location into extraprostatic tissue. Nevertheless, down-regulation of miR-205 in primary PCa was not correlated to the synchronous presence of metastasis and failed to predict the outcome for HRPCa patients. Moreover, we found a tendency for miR-205 up-regulation to correlate with an adverse outcome of PCa patients suggesting a pivotal role of miR-205 in tumourigenesis. Overall, we showed that miR-205 is involved in the development and metastasis of PCa, but failed to work as a useful clinical biomarker in HRPCa. These findings might have implications for the use of miR-205 as a prognostic or therapeutic target in HRPCa.
Resumo:
p63, a p53 family member, is a transcription factor that has complex roles in cancer. This study focuses on the role of the ∆Np63α isoform in bladder cancer (BC). Epithelial – mesenchymal transition (EMT) is a physiological process that plays an important part in metastasis and drug resistance. At the molecular level, EMT is characterized by the loss of the epithelial marker E-cadherin, and the acquisition of the transcriptional repressors of E-cadherin (ZEB1, ZEB2, TWIST, SNAI1 and SNAI2). Recent publications highlight the role of microRNAs belonging to the miR-200 family and miR-205 in preventing EMT through suppression of ZEB1 and ZEB2. p53, the homologue of p63, is implicated in regulating EMT by modulating the expression of miR-200c; however, the mechanisms underlying miR-205 control remain unclear. Here we show that ∆Np63α regulates the transcription of miR-205 and controls EMT in human BC cells. We observed a strong correlation between the expression of ∆Np63α, miR-205 and E-cadherin in a panel of BC cell lines (n=28) and also in bladder primary tumors from a cohort of patients (n=98). A remarkably inverse correlation is observed between ∆Np63α and ZEB1/2 in cell lines. Stable knockdown (KD) ∆Np63α in UC6, an “epithelial” BC cell line, decreased the expression of miR-205 and induced ZEB1/2 expression, the effects that were reversed by expression of exogenous miR-205. Moreover, overexpressing ∆Np63α in UC3, a “messenchymal” BC cell line, brought about opposite results, an increase in miR-205 expression and a reduction in ZEB1/2 expression. Modulation of ∆Np63α expression resulted in a parallel change in the expression of miR-205 and miR-205 “host” gene (miR-205HG). Nuclear run-on and chromatin immunoprecipitation experiments demonstrated that ∆Np63α regulates the transcription of miR-205 through controlling the recruitment of RNA Polymerase II to the promoter of miR-205HG. Interestingly, high miR-205 expression correlated with poor clinical outcome in BC patients, consistent with our recent publication highlighting the enrichment of ∆Np63 in a lethal subset of muscle invasive BC. In summary, our data present the important roles of ∆Np63α in preventing EMT mediated by miR-205. Our study also identifies miR-205 as a potential molecular marker to predict clinical outcome in BC patients.
Stage, Grade and Behavior of Bladder Urothelial Carcinoma Defined by the MicroRNA Expression Profile
Resumo:
Purpose: We identified miRNA expression profiles in urothelial carcinoma that are associated with grade, stage, and recurrence-free and disease specific survival. Materials and Methods: The expression of 14 miRNAs was evaluated by quantitative reverse transcriptase-polymerase chain reaction in surgical specimens from 30 patients with low grade, noninvasive (pTa) and 30 with high grade, invasive (pT2-3) urothelial carcinoma. Controls were normal bladder tissue from 5 patients who underwent surgical treatment for benign prostatic hyperplasia. Endogenous controls were RNU-43 and RNU-48. miRNA profiles were compared and Kaplan-Meier curves were constructed to analyze disease-free and disease specific survival. Results: miR-100 was under expressed in 100% of low grade pTa specimens (p <0.001) and miR-10a was over expressed in 73.3% (p <0.001). miR-21 and miR-205 were over expressed in high grade pT2-3 disease (p = 0.02 and <0.001, respectively). The other miRNAs were present at levels similar to those of normal bladder tissue or under expressed in each tumor group. miR-21 over expression (greater than 1.08) was related to shorter disease-free survival in patients with low grade pTa urothelial carcinoma. Higher miR-10a levels (greater than 2.30) were associated with shorter disease-free and disease specific survival in patients with high grade pT2-3 urothelial carcinoma. Conclusions: Four miRNAs were differentially expressed in the 2 urothelial carcinoma groups. miR-100 and miR-10a showed under expression and over expression, respectively, in low grade pTa tumors. miR-21 and miR-205 were over expressed in pT2-3 disease. In addition, miR-10a and miR-21 over expression was associated with shorter disease-free and disease specific survival. miRNAs could be incorporated into the urothelial carcinoma molecular pathway. These miRNAs could also serve as new diagnostic or prognostic markers and new target drugs.
Resumo:
Abstract Background The implication of post-transcriptional regulation by microRNAs in molecular mechanisms underlying cancer disease is well documented. However, their interference at the cellular level is not fully explored. Functional in vitro studies are fundamental for the comprehension of their role; nevertheless results are highly dependable on the adopted cellular model. Next generation small RNA transcriptomic sequencing data of a tumor cell line and keratinocytes derived from primary culture was generated in order to characterize the microRNA content of these systems, thus helping in their understanding. Both constitute cell models for functional studies of microRNAs in head and neck squamous cell carcinoma (HNSCC), a smoking-related cancer. Known microRNAs were quantified and analyzed in the context of gene regulation. New microRNAs were investigated using similarity and structural search, ab initio classification, and prediction of the location of mature microRNAs within would-be precursor sequences. Results were compared with small RNA transcriptomic sequences from HNSCC samples in order to access the applicability of these cell models for cancer phenotype comprehension and for novel molecule discovery. Results Ten miRNAs represented over 70% of the mature molecules present in each of the cell types. The most expressed molecules were miR-21, miR-24 and miR-205, Accordingly; miR-21 and miR-205 have been previously shown to play a role in epithelial cell biology. Although miR-21 has been implicated in cancer development, and evaluated as a biomarker in HNSCC progression, no significant expression differences were seen between cell types. We demonstrate that differentially expressed mature miRNAs target cell differentiation and apoptosis related biological processes, indicating that they might represent, with acceptable accuracy, the genetic context from which they derive. Most miRNAs identified in the cancer cell line and in keratinocytes were present in tumor samples and cancer-free samples, respectively, with miR-21, miR-24 and miR-205 still among the most prevalent molecules at all instances. Thirteen miRNA-like structures, containing reads identified by the deep sequencing, were predicted from putative miRNA precursor sequences. Strong evidences suggest that one of them could be a new miRNA. This molecule was mostly expressed in the tumor cell line and HNSCC samples indicating a possible biological function in cancer. Conclusions Critical biological features of cells must be fully understood before they can be chosen as models for functional studies. Expression levels of miRNAs relate to cell type and tissue context. This study provides insights on miRNA content of two cell models used for cancer research. Pathways commonly deregulated in HNSCC might be targeted by most expressed and also by differentially expressed miRNAs. Results indicate that the use of cell models for cancer research demands careful assessment of underlying molecular characteristics for proper data interpretation. Additionally, one new miRNA-like molecule with a potential role in cancer was identified in the cell lines and clinical samples.
Resumo:
Lung adenosquamous carcinoma is a particular subtype of non-small cell lung carcinoma that is defined by the coexistence of adenocarcinoma and squamous cell carcinoma components. The aim of this study was to assess the mutational profile in each component of 16 adenosquamous carcinoma samples from a Caucasian population by a combination of next generation sequencing using the cancer hotspot panel as well as the colon and lung cancer panel and FISH. Identified mutations were confirmed by Sanger sequencing of DNA from cancer cells of each component collected by Laser Capture microdissection. Mutations typical for adenocarcinoma as well as squamous cell carcinoma were identified. Driver mutations were predominantly in the trunk suggesting a monoclonal origin of adenosquamous carcinoma. Most remarkably, EGFR mutations and mutations in the PI3K signaling pathway, which accounted for 30% and 25% of tumors respectively, were more prevalent while KRAS mutations were less prevalent than expected for a Caucasian population. Surprisingly, expression of classifier miR-205 was intermediate between that of classical adenocarcinoma and squamous cell carcinoma suggesting that adenosquamous carcinoma is a transitional stage between these tumor types. The high prevalence of therapy-relevant targets opens new options of therapeutic intervention for adenosquamous carcinoma patients.
Resumo:
Resumen tomado de la publicación
Resumo:
Understanding the triggers for some cyanobacteria of the Nostocales and Stigonematales orders to produce specialised reproductive cells termed akinetes, is very important to gain further insights into their ecology. By improving our understanding of their life cycle, appropriate management options may be devised to control the formation of these cells, and therefore the potential bloom inoculum which they are thought to provide, may be reduced. This study investigated the effect of chemical (phosphorus limitation), and environmental variables (temperature shock) on akinete differentiation in the freshwater cyanobacterium Cylindrospermopsis raciborskii (AWT 205/1). From the preliminary results, it is suggested that the availability of phosphorus and changes in temperature were a necessary requirement for the formation of akinetes in this particular strain of C. raciborskii. In the four phosphorus treatments investigated (0, 3, 38 and 75 mug l(-1) P), only the two higher treatments produced akinetes (approximately 220 ml(-1)). When the first akinetes were observed in the 38 and 75 mug l(-1) P treatments, filterable reactive phosphorus (FRP) concentrations in the medium were approximately 22 and 52 mug l(-1) P, respectively, indicating that there was no phosphorus limitation. In the temperature shock experiment, akinetes were observed in the 15 and 20degreesC treatments. However, akinetes were degraded (pale yellow colour, limited swelling and shrivelled edges) and in much lower concentrations, which was thought to be a result of the daily temperature shock. We suggest that the formation of akinetes in C. raciborskii (AWT 205/1) can be triggered by an initial temperature shock and that phosphorus is a necessary requirement to allow further growth and full development of akinetes.
Resumo:
Context: Micro-RNA have emerged as an important class of short endogenous RNA that act as posttranscriptional regulators of gene expression and are constantly deregulated inhumancancer. MiR-1 has been found down-regulated in lung, colon, and prostate cancer. Objectives: In this study, we investigated the possible role of miR-1 in thyroid carcinogenesis. Design: We have analyzed miR-1 expression in a panel of thyroid neoplasias including benign and malignant lesions and searched for miR-1 targets. Results: Our results show that miR-1 expression is drastically down-regulated in thyroid adenomas and carcinomas in comparison with normal thyroid tissue. Interestingly, miR-1 down-regulation was also found in thyroid hyperproliferative nonneoplastic lesions such as goiters. We identified the CCND2, coding for the cyclin D2 (CCND2) protein that favors the G1/S transition, CXCR4, and SDF-1 alpha genes, coding for the receptor for the stromal cell derived factor-1 (SDF-1)/CXCL12 chemokine and its ligand SDF-1/CXCL12, respectively, as miR-1 targets. An inverse correlation was found between miR-1 expression and CXC chemokine receptor 4 (CXCR4) and SDF-1 alpha protein levels in papillary and anaplastic thyroid carcinomas. Consistent with a role of the CCND2 protein in cell proliferation and CXCR4 and SDF-1 alpha proteins in cell invasion and metastasis, functional studies demonstrate that miR-1 is able to inhibit thyroid carcinoma cell proliferation and migration. Conclusions: These results indicate the involvement of miR-1 in thyroid cell proliferation and migration, validating a role of miR-1 down-regulation in thyroid carcinogenesis. (J Clin Endocrinol Metab 96: E1388-E1398, 2011)
Resumo:
Objective: MicroRNAs (miRNAs) are small noncoding regulatory RNAs (19-25 nucleotides) that play a major role in regulation of gene expression. They are responsible for the control of fundamental cellular processes that has been reported to be involved in human tumorigenesis. The characterization of miRNA profiles in human tumors is crucial for the understanding of carcinogenesis processes, finding of new tumor markers, and discovering of specific targets for the development of innovative therapies. The aim of this study is to find miRNAs involved in prostate cancer progression comparing the profile of miRNA expressed by localized high grade carcinoma and bone metastasis. Material and methods: Two groups of tumors where submitted to analyses. The first is characterized by 18 patients who underwent radical prostatectomy for treatment of localized high grade prostate carcinoma (PC) with mean Gleason score 8.6, all staged pT3. The second group is composed of 4 patients with metastatic, androgen-independent prostate carcinoma, and 2 PC cell lines. LNCaP derived from a metastatic PC to a lymph node, and another derived from an obstructive, androgen-independent PC (PcBRA1). Expression analysis of 14 miRNAs was carried out using quantitative RT-PCR. Results: miR-let7c, miR-100, and miR-218 were significantly overexpressed by all localized high GS, pT3 PC in comparison with metastatic carcinoma. (35.065 vs. 0.996 P < 0.001), (55.550 vs. 8.314, P = 0.010), and (33.549 vs. 2.748, P = 0.001), respectively. Conclusion: We hypothesize that miR-let7c, miR-100, and miR-218 may be involved in the process of metastasization of PC, and their role as controllers of the expression of RAS, c-myc, Laminin 5 beta 3, THAP2, SMARCA5, and BAZ2A should be matter of additional studies. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Glioblastoma is the most frequent and malignant brain tumor, characterized by an elevated capacity for cellular proliferation and invasion. Recently, it was demonstrated that podoplanin membrane sialo-glycoprotein encoded by PDPN gene is over-expressed and related to cellular invasion in astrocytic tumors; however the mechanisms of regulation are still unknown. MicroRNAs are noncoding RNAs that regulate gene expression and several biological processes and diseases, including cancer. Nevertheless, their roles in invasion, proliferation, and apoptosis of glioblastoma are not completely understood. In this study, we focused on miR-29b and miR-125a, which were predicted to regulate PDPN, and demonstrated that these microRNAs directly target the 30 untranslated region of PDPN and inhibit invasion, apoptosis, and proliferation of glioblastomas. Furthermore, we report that miR-29b and miR-125a are downregulated in glioblastomas and also in CD133-positive cells. Taken together, these results suggest that miR-29b and miR-125a represent potential therapeutic targets in glioblastoma. (C) 2010 Wiley-Liss, Inc.
Resumo:
Trata-se, neste artigo, de examinar o processo de legitimação que acompanhou a conquista do sertão baiano durante a segunda metade do século XVII, e de explorar as interações entre as dinâmicas locais e imperiais que levaram a uma situação de violência institucionalizada contra as populações indígenas do interior da Bahia.
Resumo:
O artigo analisa as relações entre os índios e os comerciantes ambulantes que, na Amazônia do século XIX, eram conhecidos como regatões. Com base em documentos da época, constata-se que nem sempre os índios foram vítimas ingênuas e passivas diante dos regatões e que é necessário enfatizar a dimensão simbólica das trocas, a fim de recuperar o protagonismo indígena nas relações estabelecidas com os comerciantes e com as mercadorias que eles vendiam.
Resumo:
O objetivo deste artigo é problematizar as convenções intelectuais que nortearam a escrita do retrato heróico do humanista João de Barros por Manuel Severim de Faria, em sua “Vida de João de Barros, em que se discorre sobre os preceitos da história e perfeição com que escreveu as suas Décadas”, livro que compõe os Discursos vários políticos, publicado pela primeira vez em 1624. Para isso, consideramos que a confecção da memória dos lugares ocupados por João de Barros responde à demanda de uma sociedade estamental, na qual a dignidade do ofício exercido denota a dignidade de quem o exerce.
Resumo:
The development of biopharmaceutical manufacturing processes presents critical constraints, with the major constraint being that living cells synthesize these molecules, presenting inherent behavior variability due to their high sensitivity to small fluctuations in the cultivation environment. To speed up the development process and to control this critical manufacturing step, it is relevant to develop high-throughput and in situ monitoring techniques, respectively. Here, high-throughput mid-infrared (MIR) spectral analysis of dehydrated cell pellets and in situ near-infrared (NIR) spectral analysis of the whole culture broth were compared to monitor plasmid production in recombinant Escherichia coil cultures. Good partial least squares (PLS) regression models were built, either based on MIR or NIR spectral data, yielding high coefficients of determination (R-2) and low predictive errors (root mean square error, or RMSE) to estimate host cell growth, plasmid production, carbon source consumption (glucose and glycerol), and by-product acetate production and consumption. The predictive errors for biomass, plasmid, glucose, glycerol, and acetate based on MIR data were 0.7 g/L, 9 mg/L, 0.3 g/L, 0.4 g/L, and 0.4 g/L, respectively, whereas for NIR data the predictive errors obtained were 0.4 g/L, 8 mg/L, 0.3 g/L, 0.2 g/L, and 0.4 g/L, respectively. The models obtained are robust as they are valid for cultivations conducted with different media compositions and with different cultivation strategies (batch and fed-batch). Besides being conducted in situ with a sterilized fiber optic probe, NIR spectroscopy allows building PLS models for estimating plasmid, glucose, and acetate that are as accurate as those obtained from the high-throughput MIR setup, and better models for estimating biomass and glycerol, yielding a decrease in 57 and 50% of the RMSE, respectively, compared to the MIR setup. However, MIR spectroscopy could be a valid alternative in the case of optimization protocols, due to possible space constraints or high costs associated with the use of multi-fiber optic probes for multi-bioreactors. In this case, MIR could be conducted in a high-throughput manner, analyzing hundreds of culture samples in a rapid and automatic mode.