978 resultados para Mexico Gulf.
Resumo:
v.39:no.16(1958)
Resumo:
v.39:no.29(1959)
Resumo:
4
Resumo:
1
Resumo:
2
Resumo:
v.19:no.2 (1897)
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: A map of the West-Indies or the islands of America in the North Sea : with ye adjacent countries, explaning [sic] what belongs to Spain, England, France, Holland &c. also ye trade winds, and ye several tracts made by ye galeons and flota from place to place : according to ye newest and most exact observations, by Herman Moll, geographer. It was printed for Tho. Bowles in St. Pauls Church Yard and John Bowles at the Black Horse in Cornhill ca. 1715. Scale [ca. 1:4,300,000]. Covers the Gulf of Mexico and Caribbean Sea Region including parts of southern United States, Mexico, Central America, West Indies, and northern South America.The image inside the map neatline is georeferenced to the surface of the earth and fit to the North American Lambert Conformal Conic coordinate system. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as drainage, cities and other human settlements, territorial boundaries, shoreline features, and more. Relief shown pictorially. Includes also historical notes and insets.This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of originators, ground condition dates, scales, and map purposes.
Resumo:
Restudy of Deep Sea Drilling Project Sites 536 and 540 in the southeast Gulf of Mexico gives evidence for a giant wave at Cretaceous-Tertiary boundary time. Five units are recognized: (1) Cenomanian limestone underlies a hiatus in which the five highest Cretaceous stages are missing, possibly because of catastrophic K-T erosion. (2) Pebbly mudstone, 45 m thick, represents a submarine landslide possibly of K-T age. (3) Current-bedded sandstone, more than 2.5 m thick, contains anomalous iridium, tektite glass, and shocked quartz; it is interpreted as ejecta from a nearby impact crater, reworked on the deep-sea floor by the resulting tsunami. (4) A 50-cm interval of calcareous mudstone containing small Cretaceous planktic foraminifera and the Ir peak is interpreted as the silt-size fraction of the Cretaceous material suspended by the impact-generated wave. (5) Calcareous mudstone with basal Tertiary forams and the uppermost tail of the Ir anomaly overlies the disturbed interval, dating the impact and wave event as K-T boundary age. Like Beloc in Haiti and Mimbral in Mexico, Sites 536 and 540 are consistent with a large K-T age impact at the nearby Chicxulub crater.
Resumo:
Tables 1 and 2 contain the data for the physical properties of the material from Sites 535 and 540, respectively. These data are summarized for Site 535 in Table 23 and Figure 31 in the site chapter, Sites 535, 539, and 540. Site 540 data summaries can be found in Table 25 and Figure 37 of the site chapter, Sites 535, 539, and 540.
Resumo:
Seventy-one samples from nine sites were analyzed for total organic carbon (TOC). Fifty-six samples, containing 0.2% or more TOC, were evaluated by Rock-Eval to assess the nature of their kerogen and its petroleum source potential. Visual kerogen studies were carried out. Petroleum potential was encountered only in Valanginian calcareous claystones at Hole 692B close to the margin of Dronning Maud Land. A section of 44.7 m was penetrated. The unit possesses a revised mean TOC of 9.8% and petroleum potential of 43.2 kg/Mg, relatively high values in comparison to other Cretaceous anoxic oceanic sections and the totality of petroleum source rocks. At Sites 689 and 690, extremely low TOC levels, mean 0.07%, preclude kerogen analysis. Kerogens in Eocene to Pliocene sediments of the central and western Weddell Sea (Sites 694, 695, 696, and 697) are similar everywhere, largely comprising brown to black, granular, amorphous material of high rank, and generally possessing several reflectance populations of vitrinite particles. The latter are interpreted as indicative of the recycling of sediments of a variety of levels of thermal maturity.
Resumo:
Sand-silt-clay distribution was determined on 10-cm**3 sediment samples collected at the time the cores were split and described.