909 resultados para Mesenteric Artery
Resumo:
AIMS: We evaluated the mechanisms involved in insulin-induced vasodilatation after acute resistance exercise in healthy rats. MAIN METHODS: Wistar rats were divided into 3 groups: control (CT), electrically stimulated (ES) and resistance exercise (RE). Immediately after acute RE (15 sets with 10 repetitions at 70% of maximal intensity), the animals were sacrificed and rings of mesenteric artery were mounted in an isometric system. After this, concentration-response curves to insulin were performed in control condition and in the presence of LY294002 (PI3K inhibitor), L-NAME (NOS inhibitor), L-NAME+TEA (K(+) channels inhibitor), LY294002+BQ123 (ET-A antagonist) or ouabain (Na(+)/K(+) ATPase inhibitor). KEY FINDINGS: Acute RE increased insulin-induced vasorelaxation as compared to control (CT: Rmax=7.3 ± 0.4% and RE: Rmax=15.8 ± 0.8%; p<0.001). NOS inhibition reduced (p<0.001) this vasorelaxation from both groups (CT: Rmax=2.0 ± 0.3%, and RE: Rmax=-1.2 ± 0.1%), while PI3K inhibition abolished the vasorelaxation in CT (Rmax=-0.1±0.3%, p<0.001), and caused vasoconstriction in RE (Rmax=-6.5 ± 0.6%). That insulin-induced vasoconstriction on PI3K inhibition was abolished (p<0.001) by the ET-A antagonist (Rmax=2.9 ± 0.4%). Additionally, acute RE enhanced (p<0.001) the functional activity of the ouabain-sensitive Na(+)/K(+) ATPase activity (Rmax=10.7 ± 0.4%) and of the K(+) channels (Rmax=-6.1±0.5%; p<0.001) in the insulin-induced vasorelaxation as compared to CT. SIGNIFICANCE: Such results suggest that acute RE promotes enhanced insulin-induced vasodilatation, which could act as a fine tuning to vascular tone.
Resumo:
Mode of access: Internet.
Resumo:
Background and Purpose: Calcitonin gene‐related peptide (CGRP) is a potent vasodilator, implicated in the pathogenesis of migraine. CGRP activates a receptor complex comprising, calcitonin receptor‐like receptor (CLR) and receptor activity‐modifying protein 1 (RAMP1). In vitro studies indicate recycling of CLR•RAMP1 is regulated by degradation of CGRP in early endosomes by endothelin‐converting enzyme‐1 (ECE‐1). However, it is not known if ECE‐1 regulates the resensitization of CGRP‐induced responses in functional arterial tissue. Experimental Approach: CLR, ECE‐1a‐d and RAMP1 expression in rat mesenteric artery smooth muscle cells (RMA‐SMCs) and mesenteric arteries was analyzed by RT‐PCR and by immunofluorescence and confocal microscopy. CGRP‐induced signaling in cells was examined by measuring cAMP production and ERK activation. CGRP‐induced relaxation of arteries was measured by isometric wire myography. ECE‐1 was inhibited using the specific inhibitor, SM‐19712. Key Results: RMA‐SMCs and arteries contained mRNA for CLR, ECE‐1a‐d and RAMP1. ECE‐1 was present in early endosomes of RMA‐SMCs and in the smooth muscle layer of arteries. CGRP induced endothelium‐independent relaxation of arteries. ECE‐1 inhibition had no effect on initial CGRP‐induced responses but reduced cAMP generation in RMA‐SMCs and vasodilation in mesenteric arteries responses to subsequent CGRP challenges. Conclusions and Implications: ECE‐1 regulates the resensitization of responses to CGRP in RMA‐SMCs and mesenteric arteries. CGRP‐induced relaxation does not involve endothelium‐derived pathways. This is the first report of ECE‐1 regulating CGRP responses in SMCs and arteries. ECE‐1 inhibitors may attenuate an important vasodilatory pathway, implicated in primary headaches and may represent a new therapeutic approach for the treatment of migraine.
Resumo:
The P2Y(12) receptor antagonist clopidogrel blocks platelet aggregation, improves systemic endothelial nitric oxide bioavailability and has anti-inflammatory effects. Since P2Y(12) receptors have been identified in the vasculature, we hypothesized that clopidogrel ameliorates Angll (angiotensin II)-induced vascular functional changes by blockade of P2Y(12) receptors in the vasculature. Male Sprague Dawley rats were infused with Angll (60 ng/min) or vehicle for 14 days. The animals were treated with clopidogrel (10 mg . kg(-1) of body weight . day(-1)) or vehicle. Vascular reactivity was evaluated in second-order mesenteric arteries. Clopidogrel treatment did not change systolic blood pressure [(mmHg) control-vehicle, 117 +/- 7.1 versus control-clopidogrel, 125 +/- 4.2; Angll vehicle, 197 +/- 10.7 versus Angll clopidogrel, 198 +/- 5.2], but it normalized increased phenylephrine-induced vascular contractions [(%KCI) vehicle-treated, 182.2 +/- 18% versus clopidogrel, 133 +/- 14%), as well as impaired vasodilation to acetylcholine [(%) vehicle-treated, 71.7 +/- 2.2 versus clopidogrel, 85.3 +/- 2.8) in Angll-treated animals. Vascular expression of P2Y(12) receptor was determined by Western blot. Pharmacological characterization of vascular P2Y(12) was performed with the P2Y(12) agonist 2-MeS-ADP [2-(methylthio) adenosine 5`-trihydrogen diphosphate trisodium]. Although 2-MeS-ADP induced endothelium-dependent relaxation [(Emax %) = 71 +/- 12%) as well as contractile vascular responses (Emax % = 83 +/- 12%), these actions are not mediated by P2Y(12) receptor activation. 2-MeS-ADP produced similar vascular responses in control and Angll rats. These results indicate potential effects of clopidogrel, such as improvement of hypertension-related vascular functional changes that are not associated with direct actions of clopidogrel in the vasculature, supporting the concept that activated platelets contribute to endothelial dysfunction, possibly via impaired nitric oxide bioavailability.
Resumo:
The objective of this study is to describe the cranial and caudal mesenteric arteries in 10 opossuns after Neoprene latex injection. The cranial mesenteric artery arises from the abdominal aorta, caudally to the celiac trunk, originating the caudal duodenal pancreatic artery, middle and right colic, jejunal and ileocecocolic arteries. The caudal mesenteric artery arises from the aorta, cranially to the external iliac arteries, originating the cranial rectal and left colic arteries.
Resumo:
Background: Acute pancreatitis is an inflammatory disease characterized by local tissue injury and systemic inflammatory response leading to massive nitric oxide (NO) production and haemodynamic disturbances. Therefore, the aim of this work was to evaluate the vascular reactivity of pulmonary and mesenteric artery rings from rats submitted to experimental pancreatitis.Male Wistar rats were divided into three groups: saline (SAL); tauracholate (TAU) and phospholipase A(2) (PLA(2)). Pancreatitis was induced by administration of TAU or PLA(2) from Naja mocambique mocambique into the common bile duct of rats, and after 4 h of duct injection the animals were sacrificed. Concentration-response curves to acetylcholine (ACh), sodium nitroprusside (SNP) and phenylephrine (PHE) in isolated mesenteric and pulmonary arteries were obtained. Potency (pEC(50)) and maximal responses (E(MAX)) were determined. Blood samples were collected for biochemical analysis.Results: In mesenteric rings, the potency for ACh was significantly decreased from animals treated with TAU (about 4.2-fold) or PLA(2) (about 6.9-fold) compared to saline group without changes in the maximal responses. Neither pEC(50) nor E(MAX) values for Ach were altered in pulmonary rings in any group. Similarly, the pEC(50) and the E(MAX) values for SNP were not changed in both preparations in any group. The potency for PHE was significantly decreased in rat mesenteric and pulmonary rings from TAU group compared to SAL group (about 2.2- and 2.69-fold, for mesenteric and pulmonary rings, respectively). No changes were seen in the E(MAX) for PHE. The nitrite/nitrate (NO(x)(-)) levels were markedly increased in animals submitted to acute pancreatitis as compared to SAL group, approximately 76 and 68% in TAU and PLA(2) protocol, respectively.Conclusion: Acute pancreatitis provoked deleterious effects in endothelium-dependent relaxing response for ACh in mesenteric rings that were strongly associated with high plasma NO(x)(-) levels as consequence of intense inflammatory responses. Furthermore, the subsensitivity of contractile response to PHE in both mesenteric and pulmonary rings might be due to the complications of this pathological condition in the early stage of pancreatitis.
Resumo:
Background. Obesity has been associated with a variety of disease such as type II diabetes mellitus, arterial hypertension and atherosclerosis. Evidences have shown that exercise training promotes beneficial effects on these disorders, but the underlying mechanisms are not fully understood. The aim of this study was to investigate whether physical preconditioning prevents the deleterious effect of high caloric diet in vascular reactivity of rat aortic and mesenteric rings. Methods. Male Wistar rats were divided into sedentary (SD); trained (TR); sedentary diet (SDD) and trained diet (TRD) groups. Run training (RT) was performed in sessions of 60 min, 5 days/week for 12 weeks (70-80% VO2max). Triglycerides, glucose, insulin and nitrite/nitrate concentrations (NOx -) were measured. Concentration- response curves to acetylcholine (ACh) and sodium nitroprusside (SNP) were obtained. Expression of Cu/Zn superoxide dismutase (SOD-1) was assessed by Western blotting. Results. High caloric diet increased triglycerides concentration (SDD: 216 ± 25 mg/dl) and exercise training restored to the baseline value (TRD: 89 ± 9 mg/dl). Physical preconditioning significantly reduced insulin levels in both groups (TR: 0.54 ± 0.1 and TRD: 1.24 ± 0.3 ng/ml) as compared to sedentary animals (SD: 0.87 ± 0.1 and SDD: 2.57 ± 0.3 ng/ml). On the other hand, glucose concentration was slightly increased by high caloric diet, and RT did not modify this parameter (SD: 126 ± 6; TR: 140 ± 8; SDD: 156 ± 8 and TRD 153 ± 9 mg/dl). Neither high caloric diet nor RT modified NO x - levels (SD: 27 ± 4; TR: 28 ± 6; SDD: 27 ± 3 and TRD: 30 ± 2 μM). Functional assays showed that high caloric diet impaired the relaxing response to ACh in mesenteric (about 13%), but not in aortic rings. RT improved the relaxing responses to ACh either in aortic (28%, for TR and 16%, to TRD groups) or mesenteric rings (10%, for TR and 17%, to TRD groups) that was accompanied by up-regulation of SOD-1 expression and reduction in triglycerides levels. Conclusion. The improvement in endothelial function by physical preconditioning in mesenteric and aortic arteries from high caloric fed-rats was directly related to an increase in NO bioavailability to the smooth muscle mostly due to SOD-1 up regulation. © 2008 de Moraes et al; licensee BioMed Central Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
beta-Adrenoceptor (beta-AR)-mediated relaxation plays an important role in the regulation of vascular tone. beta-AR-mediated vascular relaxation is reduced in various disease states and aging. We hypothesized that beta-AR-mediated vasodilatation is impaired in DOCA-salt hypertension due to alterations in the cAMP pathway. beta-AR-mediated relaxation was determined in small mesenteric arteries from DOCA-salt hypertensive and control uninephrectomized (Uni) rats. To exclude nitric oxide (NO) and cyclooxygenase (COX) pathways, relaxation responses were determined in the presence of L-NNA and indomethacin, NO synthase inhibitor and COX inhibitors, respectively. Isoprenaline (ISO)-induced relaxation was reduced in arteries from DOCA-salt compared to Uni rats. Protein kinase A (PKA) inhibitors (H89 or Rp-cAMPS) or adenylyl cyclase inhibitor (SQ22536) did not abolish the difference in ISO-induced relaxation between the groups. Forskolin (adenylyl cyclase activator)-induced relaxation was similar between the groups. The inhibition of IKCa/SKCa channels (TRAM-34 plus UCL1684) or BKCa channels (iberiotoxin) reduced ISO-induced relaxation only in Uni rats and abolished the relaxation differences between the groups. The expression of SKCa channel was decreased in DOCA-salt arteries. The expression of BKCa channel a subunit was increased whereas the expression of BKCa channel p subunit was decreased in DOCA-salt arteries. The expression of receptor for activated C kinase 1 (RACK1), which is a binding protein for BKG, channel and negatively modulates its activity, was increased in DOCA-salt arteries. These results suggest that the impairment of beta-AR-mediated relaxation in DOCA-salt mesenteric arteries may be attributable to altered IKCa/SKCa and/or BKCa channels activities rather than cAMP/PKA pathway. Impaired beta-AR-stimulated BKCa channel activity may be due to the imbalance between its subunit expressions and RACK1 upregulation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND & AIMS Vascular hyporeactivity to vasoconstrictors contributes to splanchnic arterial vasodilatation and hemodynamic dysregulation in portal hypertension. Neuropeptide Y (NPY), a sympathetic cotransmitter, has been shown to improve adrenergic vascular contractility in portal hypertensive rats and markedly attenuate hyperdynamic circulation. To further characterize the NPY-effects in portal hypertension, we investigated its role for non-receptor-mediated vasoconstriction in the superior mesenteric artery (SMA) of portal vein ligated (PVL) and sham-operated rats. METHODS Ex vivo SMA perfusion of PVL and sham rats was used to analyse the effects of NPY on pressure response to non-receptor-mediated vasoconstriction. Dose-response curves to KCl (30-300 mM) were used to bypass G protein-coupled receptor mechanisms. Potential involvement of the cyclooxygenase-pathway was tested by non-selective cyclooxygenase-inhibition using indomethacin. RESULTS KCl-induced vascular contractility but not vascular sensitivity was significantly attenuated in PVL rats as compared with sham rats. Administration of NPY resulted in an augmentation of KCl-evoked vascular sensitivity being not different between study groups. However, KCl-induced vascular contractility was markedly more enhanced in PVL rats, thus, vascular response was no more significantly different between PVL and sham rats after addition of NPY. Administration of indomethacin abolished the NPY-induced enhancement of vasoconstriction. CONCLUSIONS Receptor-independent vascular contractility is impaired in mesenteric arteries in portal hypertension. NPY improves non-receptor mediated mesenteric vasoconstriction more effective in portal hypertension than in healthy conditions correcting splanchnic vascular hyporesponsiveness. This beneficial vasoactive action of NPY adds to its well known more pronounced effects on adrenergic vasoconstriction in portal hypertension making it a promising therapeutic agent in portal hypertension.
Resumo:
Objectives: We present an atypical case of chronic mesenteric ischemia with weight loss as only clinical manifestation and endoscopic findings imitating Crohn´s disease. Materials and Methods: A CT Angiography of abdomen confirmed the diagnosis of mesenteric ischemia after total occlusion of celiac trunk and superior mesenteric artery. Results: The patient died due to severe sepsis, as a result of extended bowel infarction. Conclusions: The diagnosis of chronic mesenteric ischemia requires a high degree of clinical suspicion and can be life-saving if early conducted.
Resumo:
A angiotensina (Ang) II e aldosterona induzem hipertensão arterial por mecanismos em parte mediados pela imunidade adaptativa, envolvendo linfócitos T auxiliares respondedores (Tresp). Os linfócitos T reguladores (Treg) são capazes de suprimir os efeitos próinflamatórios do sistema imune. O presente estudo avaliou se a transferência adotiva de Treg é capaz de prevenir a hipertensão e a lesão vascular induzidas pela Ang II ou pela aldosterona, em dois protocolos distintos. No protocolo com Ang II, camundongos machos C57BL/6 sofreram a injeção endovenosa de Treg ou Tresp, sendo depois infundidos com Ang II (1μg/kg/min), ou salina (grupo controle) por 14 dias. No protocolo com aldosterona, um outro conjunto de animais sofreu injeções de Treg ou Tresp, sendo depois infundido com aldosterona (600μg/kg/d) ou salina (grupo controle), pelo mesmo intervalo de tempo. O grupo tratado com aldosterona recebeu salina 1% na água. Tanto o grupo Ang II como aldosterona apresentaram elevação da pressão arterial sistólica (43% e 31% respectivamente), da atividade da NADPH oxidase na aorta (1,5 e 1,9 vezes, respectivamente) e no coração (1,8 e 2,4 vezes, respectivamente) e uma redução da resposta vasodilatadora à acetilcolina (de 70% e 56%, respectivamente), quando comparados com os respectivos controles (P<0,05). Adicionalmente, a administração de Ang II proporcionou um aumento rigidez vascular (P<0,001), na expressão de VCAM-1 nas artérias mesentéricas (P<0,05), na infiltração aórtica de macrófagos e linfócitos T (P<0,001) e nos níveis plasmáticos das citocinas inflamatórias interferon (INF)-γ, interleucina (IL)-6, Tumor necrosis factor (TNF)-α e IL-10 (P<0,05). Ang II causou uma queda de 43% no número de células Foxp3+ no córtex renal, enquanto que a transferência adotiva de Treg aumentou as células Foxp3+ em duas vezes em comparação com o controle. A administração de Treg preveniu o remodelamento vascular induzido pela aldosterona, observado na relação média/lúmen e na área transversal da média das artérias mesentéricas (P<0,05). Todos os parâmetros acima foram prevenidos com a administração de Treg, mas não de Tresp. Estes resultados demonstram que Treg são capazes de impedir a lesão vascular e a hipertensão mediadas por Ang II ou por aldosterona, em parte através de ações antiinflamatórias. Em conclusão, uma abordagem imuno-modulatória pode prevenir o aumento da pressão arterial, o estresse oxidativo vascular, a inflamação e a disfunção endotelial induzidos por Ang II ou aldosterona.
Resumo:
Estudos recentes mostram que o açaí é rico em polifenóis e uma dieta rica em polifenóis pode estar envolvida na proteção contra o risco cardiovascular. O objetivo deste estudo foi avaliar o efeito do tratamento crônico de animais hipertensos 2R,1C com extrato hidroalcoólico do caroço do açaí (ASE) sobre o desenvolvimento da hipertensão e disfunção endotelial; estresse oxidativo e sobre as alterações vasculares e renais. Ratos Wistar machos foram utilizados para obtenção da hipertensão renovascular 2R,1C e ratos controles 2R (sham) foram somente submetidos à laparotomia e receberam tratamento diário com veículo ou ASE (200 mg/Kg/dia) durante 40 dias. A pressão arterial sistólica (PAS) foi aferida por pletismografia de cauda e os efeitos vasodilatadores da acetilcolina (ACh) e nitroglicerina (NG) foram estudados em leito arterial mesentérico (LAM) perfundido e pré-contraído com norepinefrina. A atividade das enzimas SOD, CAT, GPx, os níveis de MDA, a carbonilação de proteínas e os níveis de nitrito foram avaliados por espectrofotometria. As expressões de enzimas pró e antioxidantes foram avaliadas por western blot. A atividade de MMP-2 foi avaliada por zimografia. Os níveis séricos de creatinina foram avaliados através de kit, por espectrofotometria. As alterações vasculares e renais foram avaliadas por microscopia de luz. A PAS foi maior nos animais 2R,1C, e o tratamento com ASE preveniu o desenvolvimento da hipertensão. O efeito vasodilatador reduzido da ACh em animais 2R,1C foi recuperado pelo ASE. O efeito vasodilatador da NG não foi diferente entre os grupos. O dano oxidativo avaliado pela peroxidação lipídica e carbonilação de proteínas foi maior nos animais 2R,1C, e reduzido pelo tratamento com ASE. As atividades da SOD, CAT e GPx foram menores em amostras de mesentério, plasma, rim e coração de animais 2R,1C e o tratamento com ASE aumentou estas atividades. A produção de NO foi menor no plasma, mesentério e rim dos animais 2R,1C, e o tratamento com ASE aumentou a produção de NO somente no rim e mesentério destes animais. A expressão de SOD-1, 2, eNOS e TIMP-1 foram menores nos animais 2R,1C e o tratamento com ASE aumentou a expressão destas enzimas. A expressão de NOX-4 e MMP-2 e a atividade de MMP-2 foram maiores nos animais 2R,1C e o tratamento com ASE reduziu a expressão destas enzimas e a atividade de MMP-2. Os animais 2R,1C apresentaram um aumento na espessura da camada média da aorta e artéria mesentérica e um aumento na relação média/lúmen da aorta, e estas alterações foram prevenidas pelo ASE. Os níveis séricos aumentados de creatinina nos animais 2R,1C foram reduzidos por ASE. As alterações morfológicas renais nos animais 2R,1C foram prevenidas pelo ASE. Portanto, o tratamento com ASE previne o desenvolvimento da hipertensão, melhora a disfunção endotelial e previne as alterações vasculares e renais em ratos 2R,1C. A redução da atividade antioxidante e o aumento na peroxidação lipídica e carbonilação de proteínas sugerem o envolvimento de um mecanismo deficiente da defesa antioxidante e de um dano oxidativo aumentado, os quais foram revertidos pelo ASE.
Resumo:
Freshly dispersed cells from sheep urinary bladder were voltage clamped using the whole cell and inside-out patch-clamp technique. Cibacron and Basilen blue increased outward current in a dose-dependent manner with a half-maximal response at 10(-5) M. Suramin, in concentrations to 10(-3) M, had no such effect. The Cibacron blue response was abolished in Ca2+-free physiological salt solution, suggesting that it was acting on a Ca2+-dependent current. Similarly, the Cibacron blue-sensitive current was significantly attenuated by charybdotoxin. Cibacron blue did not modulate inward current nor were its effects modified by caffeine or heparin, suggesting that its effect on outward current was not secondary to an increase in intracellular Ca2+. Application of 10(-4) M Cibacron blue to the inside membrane of excised patches caused a rapid increase in open probability of a large-conductance (300 pS) K+ channel. These results suggest that Cibacron blue is a potent activator of a Ca2+-dependent outward current in bladder smooth muscle cells in addition to its action as a purinergic blocker.
Resumo:
Background and purpose: Obestatin is a recently-discovered gastrointestinal peptide with established metabolic actions, which is linked to diabetes and may exert cardiovascular benefits. Here we aimed to investigate the specific effects of obestatin on vascular relaxation. Experimental approach: Cumulative relaxation responses to obestatin peptides were assessed in isolated rat aorta and mesenteric artery (n=8) in the presence/absence of selective inhibitors. Complementary studies were performed in cultured bovine aortic endothelial cells (BAEC). Key results: Obestatin peptides elicited concentration-dependent relaxation in both aorta and mesenteric artery. Responses to full-length obestatin(1-23) were greater than those to obestatin(1-10) and obestatin(11-23). Obestatin(1-23)-induced relaxation was attenuated by endothelial denudation, L-NAME (NO synthase inhibitor), high extracellular K(+) , GDP-ß-S (G protein inhibitor), MDL-12,330A (adenylate cyclase inhibitor), wortmannin (PI3K inhibitor), KN-93 (CaMKII inhibitor), ODQ (guanylate cyclase inhibitor) and iberiotoxin (BK(Ca) blocker), suggesting that it is mediated by an endothelium-dependent NO signalling cascade involving an adenylate cyclase-linked G protein-coupled receptor, PI3K/Akt, Ca(2+) -dependent eNOS activation, soluble guanylate cyclase and modulation of vascular smooth muscle K(+) . Supporting data from BAEC indicated that nitrite production, intracellular Ca(2+) and Akt phosphorylation were increased after exposure to obestatin(1-23). Relaxations to obestatin(1-23) were unaltered by inhibitors of candidate endothelium-derived hyperpolarising factors (EDHFs) and combined SK(Ca) /IK(Ca) blockade, suggesting that EDHF-mediated pathways were not involved. Conclusions and Implications: Obestatin produces significant vascular relaxation via specific activation of endothelium-dependent NO signalling. These actions may be important in normal regulation of vascular function and are clearly relevant to diabetes, a condition characterised by endothelial dysfunction and cardiovascular complications.