969 resultados para Mechanical components
Resumo:
OBJECTIVE: Acupuncture is a complex intervention consisting of specific and non-specific components. Acupuncture studies more frequently focus on collecting data from the patients’ perspective and response, but the acupuncturist’s role remains relatively unclear. In order to investigate potential non-mechanical active factors originating from the acupuncturist and transmitted to the patient during treatment, two novel devices for basic research in acupuncture were designed. The Acuplicator allows the researcher to insert needles without touching the needles themselves, while the Veliusator locks the needle in its place so that no mechanical movement can be transferred. METHODS: The Acuplicator was used to insert needles at Neiguan (PC6) on the right forearm of 23 volunteers. The insertion depth was measured using a depth gauge. The transfer of mechanical movements from the handle to the tip was detected with a precision length gauge with a motoric-tactile sensor. RESULTS: The mean insertion depth was (12.3 ± 1.5) mm (range 9.5 to 15.0 mm). Even with intense manipulation of the needle handle, no movements within ± 1 μm could be detected at the tip when the needle was locked. CONCLUSION: With these two devices it will be possible to investigate the influence of non-mechanical components such as therapeutic qi in acupuncture.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
A simple composite design methodology has been developed from the basic principles of composite component failure. This design approach applies the principles of stress field matching to develop suitable reinforcement patterns around three-dimensional details such as lugs in mechanical components. The resulting patterns are essentially curvilinear orthogonal meshes, adjusted to meet the restrictions imposed by geometric restraints and the intended manufacturing process. Whilst the principles behind the design methodology can be applied to components produced by differing manufacturing processes, the results found from looking at simple generic example problems suggest a realistic and practical generic manufacturing approach. The underlying principles of the design methodology are described and simple analyses are used to help illustrate both the methodology and how such components behave. These analyses suggest it is possible to replace high-strength steel lugs with composite components whose strength-to-weight ratio is some 4-5 times better. © 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Thermal barrier coatings (TBCs) are widely adopted to protect mechanical components in gas turbine engines operating at high temperature. Basically, the surface temperature of these components must be low enough to retain material properties within acceptable bounds and to extend component life. From this standpoint, air plasma-sprayed (APS) ceria and yttria co-stabilized zirconia (CYSZ) is particularly promising because it provides enhanced thermal insulation capabilities and resistance to hot corrosion. However, essential mechanical properties, such as hardness and Young's modulus, have been less thoroughly investigated. Knowledge of Young's modulus is of concern because it has a significant effect on strain tolerance and stress level and, hence, on durability. The focus of the present study was to determine the mechanical properties of APS CYSZ coatings. In particular, X-ray diffraction (XRD) is adopted for phase analysis of powders and as-sprayed coatings. In addition, scanning electron microscopy (SEM) and image analysis (IA) are employed to explore coating microstructure and porosity. Finally, the Young's modulus of the coating is determined using nanoindentation and a resonant method. The results obtained are then discussed and a cross-check on their consistency is carried out by resorting to a micromechanical model. © 2010 Blackwell Publishing Ltd.
Investigation on Surface Finishing of Components Ground with Lapping Kinematics: Lapgrinding Process
Resumo:
Over the last three decades, researchers have responded to the demands of industry to manufacture mechanical components with geometrical tolerance, dimensional tolerance, and surface finishing in nanometer levels. The new lapgrinding process developed in Brazil utilizes lapping kinematics and a flat grinding wheel dressed with a single-point diamond dresser in agreement with overlap factor (U(d)) theory. In the present work, the influences of different U(d) values on dressing (U(d) = 1, 3 e 5) and grain size of the grinding wheel made of silicon carbide (SiC = 800, 600 e 300 mesh) are analyzed on surface finishing of stainless steel AISI 420 flat workpieces submitted to the lapgrinding process. The best results, obtained after 10 minutes of machining, were: average surface roughness (Ra) 1.92 nm; 1.19 mu m flatness deviation of 25.4 mm diameter workpieces and mirrored surface finishing. Given the surface quality achieved, the lapgrinding process can be included among the ultra-precision finishing processes and, depending on the application, the steps of lapping followed by polishing can be replaced by the proposed abrasive process.
Resumo:
This work has as objective to develop an interesting research line in the Optical Instrumentation area, that is to associate the Optical Design to the Ophthalmology area. The purpose of it is handling the optical design techniques to design a widely used ophthalmologic instrument called slit lamp. The optical and mechanical design of the slit lamp prototype was carefully projected in order to improve the best quality image, the comfort of the patient and the user, the simplicity of handling, the facility of production the availability of optical and mechanical components in the national market and the low cost of production. The main goal of this work was to realize a project using totally national technology, cheapening the cost and forming the optimum image required for the slit lamp optical system.
Resumo:
The Gracias Laboratory at Johns Hopkins University has developed microgrippers which utilize chemically-actuated joints to be used in micro-surgery. These grippers, however, take up to thirty minutes to close fully when activated biochemicals in the human body. This is very problematic and could limit the use of the devices in surgery. It is the goal of this research to develop a gripper that uses theGracias Laboratory's existing joints in conjunction with mechanical components to decrease the closing time. The purpose of including the mechanical components is to induce a state of instability at which time a small perturbation would cause the joint to close fully.The main concept of the research was to use the lateral buckling of a triangular gripper geometry and use a toggle mechanism to decrease the closure time of the device. This would create a snap-action device mimicking the quick closure of a Venus flytrap. All developed geometries were tested using finite element analysis to determine ifloading conditions produced the desired buckled shape. This research examines lateral buckling on the micro-scale and the possibility ofusing this phenomenon in a micro-gripper. Although a final geometry with the required deformed shaped was not found, this document contains suggestions for future geometries that may produce the correct deformed shape. It was determined through this work that in order to obtain the desired deformed shape, polymeric sections need to be added to the geometry. This simplifies the analysis and allows the triangular structure to buckle in the appropriate way due to the added joints. Future work for this project will be completed by undergraduate students at Bucknell University. Fabrication and testing of devices will be done at Johns Hopkins University in the Gracias Laboratory.
Resumo:
Azobenzenes (1,2-diaryldiazenes) are very important organic pigments, and they have a unique place in the field of photoresponsive conjugated molecules due to their (usually) reversible E/Z photoisomerisation. The current intense interest in molecular analogues of mechanical components and information storage and processing elements has stimulated research into conjugated molecules whose shape and/or optical properties can be switched electro- or photochemically. Among the classes of conjugated pigments being explored in these contexts are the porphyrinoids, which offer advantages of intense light absorption, a variety of accessible oxidation states, and synthetic control of properties through peripheral or central substitution. Extension of porphyrinoid conjugation can be achieved by linking the peripheral carbons either by three direct bonds (as in the “porphyrin tapes” of Osuka et al.) or through potentially conjugating bridges such as alkenes or, even better, alkynes.
Resumo:
The diagnostics of mechanical components operating in transient conditions is still an open issue, in both research and industrial field. Indeed, the signal processing techniques developed to analyse stationary data are not applicable or are affected by a loss of effectiveness when applied to signal acquired in transient conditions. In this paper, a suitable and original signal processing tool (named EEMED), which can be used for mechanical component diagnostics in whatever operating condition and noise level, is developed exploiting some data-adaptive techniques such as Empirical Mode Decomposition (EMD), Minimum Entropy Deconvolution (MED) and the analytical approach of the Hilbert transform. The proposed tool is able to supply diagnostic information on the basis of experimental vibrations measured in transient conditions. The tool has been originally developed in order to detect localized faults on bearings installed in high speed train traction equipments and it is more effective to detect a fault in non-stationary conditions than signal processing tools based on spectral kurtosis or envelope analysis, which represent until now the landmark for bearings diagnostics.
Resumo:
The signal processing techniques developed for the diagnostics of mechanical components operating in stationary conditions are often not applicable or are affected by a loss of effectiveness when applied to signals measured in transient conditions. In this chapter, an original signal processing tool is developed exploiting some data-adaptive techniques such as Empirical Mode Decomposition, Minimum Entropy Deconvolution and the analytical approach of the Hilbert transform. The tool has been developed to detect localized faults on bearings of traction systems of high speed trains and it is more effective to detect a fault in non-stationary conditions than signal processing tools based on envelope analysis or spectral kurtosis, which represent until now the landmark for bearings diagnostics.
Resumo:
This paper considers the design of active control for car suspension systems using a particular form of energy-based control called Interconnection-and-Damping-Assignment Passivity-Based Control (IDA-PBC). This approach allows one to shape the kinetic and potential energy as well as modify the power flow among different components of the system by changing the interconnection and dissipative structure in a meaningful way. Different controller parameterisations are considered to design a class of controllers for active suspension systems.
Resumo:
The preventive maintenance of traction equipment for Very High Speed Trains (VHST) nowadays is becoming very expensive owing to the high complexity and quality of these components that require high reliability. An efficient maintenance approach like the Condition-Based Maintenance (CBM) should be implemented to reduce the costs. For this purpose, an experimental full-scale test rig for the CBM of VHST traction equipment has been designed to investigate in detail failures in the main mechanical components of system, i.e. motor, bearings and gearbox. The paper describes the main characteristics of this unique test rig, able to reproduce accurately the train operating conditions, including the relative movements of the motor, the gearbox and the wheel axle. Gearbox, bearing seats and motor are equipped by accelerometers, thermocouples, torque meter and other sensors in different positions. The testing results give important information about the most suitable sensor position and type to be installed for each component and show the effectiveness of the techniques used for the signal analysis in order to identify faults of the gearbox and motor bearings.
Resumo:
Focused laser micromachining in an optical microscope system is used to prototype packages for optoelectronic devices and to investigate new materials with potential applications in packaging. Micromachined thin films are proposed as mechanical components to locate fibres and other optical and electrical components on opto-assemblies. This paper reports prototype structures which are micromachined in silicon carbide to produce beams 5 μm thick by (i) laser cutting a track in a SiC coated Si wafer, (ii) undercutting by anisotropic silicon etching using KOH in water, and (iii) trimming if necessary with the laser system. This approach has the advantage of fast turn around and proof of concept. Mechanical test data are obtained from the prototype SiC beam package structures by testing with a stylus profilometer. The Youngs modulus obtained for chemical vapour deposited silicon carbide is 360 +/- 50 GPa indicating that it is a promising material for packaging applications.
Resumo:
Ensaio não destrutivo é uma ferramenta essencial quando um equipamento, dispositivo ou componente não pode ser submetido a procedimentos destrutivos ou invasivos devido a razões de segurança, alto custo ou outras restrições físicas ou logísticas. Dentro deste quadro radiografias por transmissão com raios gama e nêutrons térmicos são técnicas singulares para inspecionar um objeto e desvendar sua estrutura interna devido à capacidade de atravessar uma vasta gama de materiais utilizados na indústria. Grosso modo, raios gama são mais atenuados por materiais pesados enquanto nêutrons térmicos são mais atenuados por materiais mais leves, tornando-as ferramentas complementares. Este trabalho apresenta os resultados obtidos na inspeção de vários componentes mecânicos, através da radiografia por transmissão com nêutrons térmicos e raios gama. O fluxo de nêutrons térmicos de 4,46x105 n.cm-2.s-1 disponível no canal principal do reator de pesquisa Argonauta do Instituto de Engenharia Nuclear foi usado como fonte para as imagens radiográficas com nêutrons. Raios dekeV emitidos pelo 198Au, também produzido no reator, foram usados como fonte de radiação para radiografias . Imaging Plates, especificamente produzidos para operar com nêutrons térmicos ou com raios X, foram empregados como detectores e dispositivos de armazenamento e captação de imagens para cada uma dessas radiações. Esses dispositivos exibem varias vantagens quando comparados ao filme radiográfico convencional. Com efeito, além de maior sensibilidade e serem reutilizáveis não são necessários câmaras escuras e processamento químico para a revelação. Em vez disso, ele é lido por um feixe de laser que libera elétrons armadilhados na rede cristalina durante a exposição à radiação, fornecendo uma imagem final digital. O desempenho de ambos os sistemas de aquisição de imagens, assim constituído, foi avaliado com respeito à sensibilidade, resolução espacial, linearidade e range dinâmico, incluído uma comparação com sistemas radiográficos com nêutrons empregando filmes e folhas de gadolínio como conversor de nêutrons em partículas carregadas. Além desta caracterização, diversos equipamentos e componentes foram radiografados com ambos os sistemas visando-se avaliar suas capacidades de desvendar a estrutura interna desses objetos e detectar estruturas e estados anormais. Dentro desta abordagem, uma neutrongrafia detectou a presença de material cerâmico remanescente empregado como molde no processo de fabricação nos canais de refrigeração de uma aleta do estator de uma turbina tipo turbo-fan, que deveria estar livre desse material. O reostato danificado de um sensor de pressão automotivo, foi identificado por neutrongrafia, embora nesse caso a radiografia também conseguiu realizar essa tarefa com melhor resolução, corroborando assim as curvas de resolução espacial obtidas na caracterização dos dois sistemas. A homogeneidade da distribuição do material encapsulado em uma gaxeta explosiva de chumbo utilizada na indústria aeroespacial foi igualmente verificada por neutrongrafia porque esse metal é relativamente transparente para nêutrons, mas suficientemente opaco para o explosivo rico em hidrogênio. Diversos outros instrumentos e componentes tais como variômetro, altímetro, bússola aeronáutica, injetor automotivo de combustível, foto-camera, disco rígido de computador, motor de passo, conectores eletrônicos e projéteis foram radiografados com ambos os sistemas visando avaliar suas habilidades em desvendar diferentes peculiaridades em função do agente interrogador.
Resumo:
Tensões residuais são uma das principais causas de falhas em componentes mecânicos submetidos a processos de fabricação. O objetivo do trabalho foi medir as tensões residuais presentes em um tubo quadrado soldado por resistência elétrica de alta frequência e caracterizar microestruturalmente o seu material. Para a caracterização, foram utilizadas técnicas de microscopia óptica (MO), microscopia eletrônica de varredura (MEV) e análise química quantitativa. Para a medição das tensões residuais, foi utilizado o método do furo cego, baseado na norma ASTM E837-08, onde rosetas (strain-gages) são coladas à peça para medir as deformações geradas devido à usinagem de um pequeno furo no local de medição. As deformações foram associadas às tensões residuais através de equações baseadas na Lei de Hooke. A caracterização revelou uma microestrutura composta basicamente de ferrita e perlita, típica de aços com baixo teor de carbono, corroborando com a especificação fornecida pelo fabricante. As tensões residuais encontradas foram trativas e mostraram-se elevadas, com alguns valores acima do limite de escoamento do material.