937 resultados para Mechanical characterization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron nitride nanomaterials have attracted significant interest due to their superior chemical and physical properties. Despite these novel properties, investigation on the interaction between boron nitride nanoparticle (BN NP) and living systems has been limited. In this study, BN NP (100–250 nm) is assessed as a promising biomaterial for medical applications. The toxicity of BN NP is evaluated by assessing the cells behaviours both biologically (MTT assay, ROS detection etc.) and physically (atomic force microscopy). The uptake mechanism of BN NP is studied by analysing the alternations in cellular morphology based on cell imaging techniques. The results demonstrate in vitro cytocompatibility of BN NP with immense potential for use as an effective nanoparticle for various bio-medical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the application of lensless in-line digital holographic microscopy (DHM) to carry out thermo-mechanical characterization of microheaters fabricated through PolyMUMPs three-layer polysilicon surface micromachining process and subjected to a high thermal load. The mechanical deformation of the microheaters on the electrothermal excitation due to thermal stress is analyzed. The numerically reconstructed holographic images of the microheaters clearly indicate the regions under high stress. A double-exposure method has been used to obtain the quantitative measurements of the deformations, from the phase analysis of the hologram fringes. The measured deformations correlate well with the theoretical values predicted by a thermo-mechanical analytical model. The results show that lensless in-line DHM with Fourier analysis is an effective method for evaluating the thermo-mechanical characteristics of MEMS components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conceptual model for deep geological disposal of high level nuclear waste (HLW) is based on multiple barrier system consisting of natural and engineered barriers. Buffer/backfill material is regarded as the most important engineered barrier in HLW repositories. Due to large swelling ability, cation adsorption capacity, and low permeability bentonite is considered as suitable buffer material in HLW repositories. Japan has identified Kunigel VI bentonite, South Korea - Kyungju bentonite, China - GMZ bentonite, Belgium - FoCa clay, Sweden - MX-80 bentonite, Spain - FEBEX bentonite and Canada - Avonseal bentonite as candidate bentonite buffer for deep geological repository program. An earlier study on Indian bentonites by one of the authors suggested that bentonite from Barmer district of Rajasthan (termed Barmer 1 bentonite), India is suited for use as buffer material in deep geological repositories. However, the hydro-mechanical properties of the Barmer 1 bentonite are unavailable. This paper characterizes Barmer 1 bentonite for hydro-mechanical properties, such as, swell pressure, saturated permeability, soil water characteristic curve (SWCC) and unconfined compression strength at different dry densities. The properties of Barmer 1 bentonite were compared with bentonite buffers reported in literature and equations for designing swell pressure and saturated permeability coefficient of bentonite buffers were arrived at. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we integrate two or more compliant mechanisms to get enhanced functionality for manipulating and mechanically characterizing the grasped objects of varied size (cm to sub-mm), stiffness (1e5 to 10 N/m), and materials (cement to biological cells). The concepts of spring-lever (SL) model, stiffness maps, and non-dimensional kinetoelastostatic maps are used to design composite and multi-scale compliant mechanisms. Composite compliant mechanisms comprise two or more different mechanisms within a single elastic continuum while multi-scale ones possess the additional feature of substantial difference in the sizes of the mechanisms that are combined into one. We present three applications: (i) a composite compliant device to measure the failure load of the cement samples; (ii) a composite multi-scale compliant gripper to measure the bulk stiffness of zebrafish embryos; and (iii) a compliant gripper combined with a negative-stiffness element to reduce the overall stiffness. The prototypes of all three devices are made and tested. The cement sample needed a breaking force of 22.5 N; the zebrafish embryo is found to have bulk stiffness of about 10 N/m; and the stiffness of a compliant gripper was reduced by 99.8 % to 0.2 N/m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solvent-cast films from three polymers, carboxymethylcellulose (CMC), sodium alginate (SA), and xanthan gum, were prepared by drying the polymeric gels in air. Three methods, (a) passive hydration, (b) vortex hydration with heating, and (c) cold hydration, were investigated to determine the most effective means of preparing gels for each of the three polymers. Different drying conditions [relative humidity - RH (6-52%) and temperature (3-45 degrees C)] were investigated to determine the effect of drying rate on the films prepared by drying the polymeric gels. The tensile properties of the CMC films were determined by stretching dumbbell-shaped films to breaking point, using a Texture Analyser. Glycerol was used as a plasticizer, and its effects on the drying rate, physical appearance, and tensile properties of the resulting films were investigated. Vortex hydration with heating was the method of choice for preparing gels of SA and CMC, and cold hydration for xanthan gels. Drying rates increased with low glycerol content, high temperature, and low relative humidity. The residual water content of the films increased with increasing glycerol content and high relative humidity and decreased at higher temperatures. Generally, temperature affected the drying rate to a greater extent than relative humidity. Glycerol significantly affected the toughness (increased) and rigidity (decreased) of CMC films. CMC films prepared at 45 degrees C and 6% RH produced suitable films at the fastest rate while films containing equal quantities of glycerol and CMC possessed an ideal balance between flexibility and rigidity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose. This study examined the mechanical characteristics and release of tetracycline from bioadhesive, semi-solid systems which were designed for the treatment of periodontal diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reports the use of texture profile analysis (TPA) to mechanically characterize polymeric, pharmaceutical semisolids containing at least one bioadhesive polymer and to determine interactions between formulation components. The hardness, adhesiveness, force per unit time required for compression (compressibility), and elasticity of polymeric, pharmaceutical semisolids containing polycarbophil (1 or 5% w/w), polyvinylpyrrolidone (3 or 5% w/w), and hydroxyethylcellulose (3, 5, or 10% w/w) in phosphate buffer (pH 6.8) were determined using a texture analyzer in the TPA mode (compression depth 15 mm, compression rate 8 mm s(-1) 15 s delay period). Increasing concentrations of polycarbophil, poly vinylpyrrolidone, and hydroxyethylcellulose significantly increased product hardness, adhesiveness, and compressibility but decreased product elasticity. Statistically, interactions between polymeric formulation components were observed within the experimental design and were probably due to relative differences in the physical states of polyvinylpyrrolidone and polycarbophil in the formulations, i.e., dispersed/dissolved and unswollen/swollen, respectively. Increased product hardness and compressibility were possibly due to the effects of hydroxyethylcellulose, polyvinylpyrrolidone, and polycarbophil on the viscosity of the formulations. Increased adhesiveness was related to the concentration and, more importantly, to the physical state of polycarbophil. Decreased product elasticity was due to the increased semisolid nature of the product. TPA is a rapid, straightforward analytical technique that may be applied to the mechanical characterization of polymeric, pharmaceutical semisolids. It provides a convenient means to rapidly identify physicochemical interactions between formulation components. (C) 1996 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study is to compare the positioning accuracy at different gantry angles of two electronic portal imaging devices (EPIDs) support arm systems by using EPID difference images as a measure for displacement. This work presents a comparison of the mechanical performance of eight Varian aS500 (Varian Medical Systems, Palo Alto, CA) EPIDs, mounted using either the Varian Exact-arm or R-arm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recycled polymer matrix composites reinforced with wood flour can be a viable alternative for the replacement of wood and virgin polymers in materials used in floors, door frames, windows and external cladding. The objective of this research was to determine some physical and mechanical parameters of composite made with Pinus taeda and elliottii wood flour (WF) and recycled polypropylene (PP), without the use of compatibilizers or additives. The composites were separated into four traits, namely 100% PP, 90% PP with 10%, WF 80% PP with 20% WF and 70 % PP with 30% WF. The characterization of the composite followed the standards ASTM D-638-10, ASTM D256-00, ASTM D570 -98, ASTM D1238 -10 and ASTM G 155-05, it was also employed the surface analysis by scanning electron microscopy. The dimensional stability tests showed satisfactory results. Even the composite with a higher percentage of wood flour (30%) had a flow index of 10 MFI, considered compatible with that observed for PP (polypropylene) virgin by standard ASTM D 1238-10. The inclusion of wood flour (FM) afforded composites with good mechanical characteristics which can be applied in manufacture of different materials, specifically employed outdoors.