955 resultados para Mean first-passage time
Resumo:
A retarded backward equation for a non-Markovian process induced by dichotomous noise (the random telegraphic signal) is deduced. The mean-first-passage time of this process is exactly obtained. The Gaussian white noise and the white shot noise limits are studied. Explicit physical results in first approximation are evaluated.
Resumo:
An equation for mean first-passage times of non-Markovian processes driven by colored noise is derived through an appropriate backward integro-differential equation. The equation is solved in a Bourret-like approximation. In a weak-noise bistable situation, non-Markovian effects are taken into account by an effective diffusion coefficient. In this situation, our results compare satisfactorily with other approaches and experimental data.
Resumo:
We study the mean-first-passage-time problem for systems driven by the coin-toss square-wave signal. Exact analytic solutions are obtained for the driftless case. We also obtain approximate solutions for the potential case. The mean-first-passage time exhibits discontinuities and a remarkable nonsmooth oscillatory behavior which, to our knowledge, has not been observed for other kinds of driving noise.
Resumo:
An equation for mean first-passage times of non-Markovian processes driven by colored noise is derived through an appropriate backward integro-differential equation. The equation is solved in a Bourret-like approximation. In a weak-noise bistable situation, non-Markovian effects are taken into account by an effective diffusion coefficient. In this situation, our results compare satisfactorily with other approaches and experimental data.
Resumo:
We study the first passage statistics to adsorbing boundaries of a Brownian motion in bounded two-dimensional domains of different shapes and configurations of the adsorbing and reflecting boundaries. From extensive numerical analysis we obtain the probability P(ω) distribution of the random variable ω=τ1/(τ1+τ2), which is a measure for how similar the first passage times τ1 and τ2 are of two independent realizations of a Brownian walk starting at the same location. We construct a chart for each domain, determining whether P(ω) represents a unimodal, bell-shaped form, or a bimodal, M-shaped behavior. While in the former case the mean first passage time (MFPT) is a valid characteristic of the first passage behavior, in the latter case it is an insufficient measure for the process. Strikingly we find a distinct turnover between the two modes of P(ω), characteristic for the domain shape and the respective location of absorbing and reflective boundaries. Our results demonstrate that large fluctuations of the first passage times may occur frequently in two-dimensional domains, rendering quite vague the general use of the MFPT as a robust measure of the actual behavior even in bounded domains, in which all moments of the first passage distribution exist.
Resumo:
A precise digital simulation of a bistable system under the effect of colored noise is carried out. A set of data for the mean first-passage time is obtained. The results are interpreted and compared with presently available theories, which are revisited following a new insight. Discrepancies that have been discussed in the literature are understood within our framework.
Resumo:
We present exact equations and expressions for the first-passage-time statistics of dynamical systems that are a combination of a diffusion process and a random external force modeled as dichotomous Markov noise. We prove that the mean first passage time for this system does not show any resonantlike behavior.
Resumo:
In a recent paper, [J. M. Porrà, J. Masoliver, and K. Lindenberg, Phys. Rev. E 48, 951 (1993)], we derived the equations for the mean first-passage time for systems driven by the coin-toss square wave, a particular type of dichotomous noisy signal, to reach either one of two boundaries. The coin-toss square wave, which we here call periodic-persistent dichotomous noise, is a random signal that can only change its value at specified time points, where it changes its value with probability q or retains its previous value with probability p=1-q. These time points occur periodically at time intervals t. Here we consider the stationary version of this signal, that is, equilibrium periodic-persistent noise. We show that the mean first-passage time for systems driven by this stationary noise does not show either the discontinuities or the oscillations found in the case of nonstationary noise. We also discuss the existence of discontinuities in the mean first-passage time for random one-dimensional stochastic maps.
Resumo:
The exponential coefficient in the first-passage-time problem for a bistable potential with highly colored noise is predicted to be (8/27 by all existing theories. On the other hand, we show herein that all existing numerical evidence seems to indicate that the coefficient is actually larger by about (4/3, i.e., that the numerical factor in the exponent is approximately (32/81. Existing data cover values of ¿V0/D up to ~20, where V0 is the barrier height, ¿ the correlation time of the noise, and D the noise intensity. We provide an explanation for the modified coefficinet, the explanation also being based on existing numerical simulations. Whether the value (8/27 predicted by all large-¿ theories is achieved for even larger values of ¿V0/D is unknown but appears questionable (except perhaps for enormously large, experimentally inaccessible values of this factor) in view of currently available results.
Resumo:
The dynamical process through a marginal state (saddle point) driven by colored noise is studied. For small correlation time of the noise, the mean first-passage time and its variance are calculated using standard methods. When the correlation time of the noise is finite or large, an alternative approach, based on simple physical arguments, is proposed. It will allow us to study also the passage times of an unstable state. The theoretical predictions are tested satisfactorily by the use of computer simulations.
Resumo:
Herein we present a calculation of the mean first-passage time for a bistable one-dimensional system driven by Gaussian colored noise of strength D and correlation time ¿c. We obtain quantitative agreement with experimental analog-computer simulations of this system. We disagree with some of the conclusions reached by previous investigators. In particular, we demonstrate that all available approximations that lead to a state-dependent diffusion coefficient lead to the same result for small D¿c.
Resumo:
We calculate noninteger moments ¿tq¿ of first passage time to trapping, at both ends of an interval (0,L), for some diffusion and dichotomous processes. We find the critical behavior of ¿tq¿, as a function of q, for free processes. We also show that the addition of a potential can destroy criticality.
Resumo:
We consider mean first-passage times (MFPTs) for systems driven by non-Markov gamma and McFadden dichotomous noises. A simplified derivation is given of the underlying integral equations and the theory for ordinary renewal processes is extended to modified and equilibrium renewal processes. The exact results are compared with the MFPT for Markov dichotomous noise and with the results of Monte Carlo simulations.
Resumo:
A calculation of passage-time statistics is reported for the laser switch-on problem, under the influence of colored noise, when the net gain is continuously swept from below to above threshold. Cases of fast and slow sweeping are considered. In the weak-noise limit, asymptotic results are given for small and large correlation times of the noise. The mean first passage time increases with the correlation time of the noise. This effect is more important for fast sweeping than for slow sweeping.
Resumo:
The purpose of this paper is to investigate several analytical methods of solving first passage (FP) problem for the Rouse model, a simplest model of a polymer chain. We show that this problem has to be treated as a multi-dimensional Kramers' problem, which presents rich and unexpected behavior. We first perform direct and forward-flux sampling (FFS) simulations, and measure the mean first-passage time $\tau(z)$ for the free end to reach a certain distance $z$ away from the origin. The results show that the mean FP time is getting faster if the Rouse chain is represented by more beads. Two scaling regimes of $\tau(z)$ are observed, with transition between them varying as a function of chain length. We use these simulations results to test two theoretical approaches. One is a well known asymptotic theory valid in the limit of zero temperature. We show that this limit corresponds to fully extended chain when each chain segment is stretched, which is not particularly realistic. A new theory based on the well known Freidlin-Wentzell theory is proposed, where dynamics is projected onto the minimal action path. The new theory predicts both scaling regimes correctly, but fails to get the correct numerical prefactor in the first regime. Combining our theory with the FFS simulations lead us to a simple analytical expression valid for all extensions and chain lengths. One of the applications of polymer FP problem occurs in the context of branched polymer rheology. In this paper, we consider the arm-retraction mechanism in the tube model, which maps exactly on the model we have solved. The results are compared to the Milner-McLeish theory without constraint release, which is found to overestimate FP time by a factor of 10 or more.