922 resultados para Mathematic modeling
Resumo:
In-package pasteurization is the most used method for beer microbiological stabilization. The search for safer and better quality food has created a need to better understand the processes involved in producing it. However, little is known about the temperature and velocity profiles during the thermal processes of liquid foods in commercial packaging, which results in over-dimensioned processes to guarantee safety, decreasing the sensorial and nutritional characteristics of the product and increasing process costs. Simulations using Computational Fluid-Dynamics (CFD) have been used by various authors to evaluate those processes. The objective of the present paper was to evaluate the effect of packaging orientation in the pasteurization of beer in a commercial aluminum can using CFD. A heating process was simulated at 60 ºC up to 15 PUs (a conventional beer process, in which 1 Pasteurization Unit (PU) is equivalent to 1minute at 60 ºC). The temperature profile and convection current velocity along the process and the variation of the PUs were evaluated in relation to time considering the cans in the conventional, inverted, and horizontal positions. The temperature and velocity profiles were similar to those presented in the literature. The package position did not result in process improvement.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The project has as objective to adjust the model QUAL2K to “Ribeirão Claro” river to evaluate the behavior of OD and DBO when are simulated the following sceneries: (i) implantation of a hypothetic wastewater station treatment that treats all the effluent thrown nowadays in the body of water; (ii) increase of withdrawal flow of DAAE to public supply and (iii) increase of nowadays flow of wastewater throwing, being the two last caused for the population increasing. The results obtained allowed to conclude that the model QUAL2K presented a good adjustment to the variable OD and a reasonable adjustment to the variable DBO, being that the same was suitable to the simulation of the sceneries proposed.
Resumo:
Tourism contributes to the development of many regions. Different factors affect the movement of tourists within a destination. Those factors are related to the tourist characteristics, like the time budgets, preferences or destination knowledge, and to the destination features, like the attraction characteristics or accessibility level. Tourist decisions aren’t always done in a rational way. Emotions add further complexity to the human decision process. The use of footpaths can play an important role in the satisfaction of tourists, helping them discover the territory and giving them access to different types of attractions. The existence of a mathematical model that integrates the main factors related to the movement of independent tourists within a destination, in a dynamic way, will make possible the creation of an adaptable software tool. This tool will meet the specific needs of tourists, allowing the use of the network in an optimal way by the different tourist profiles, and the needs of the regional government and business, permitting better decisions and the offer of relevant tourism products. This article identifies the main tourists’ mobility criteria in the São Miguel island territory, Azores, Portugal, recognizes the necessary modelling process and identifies the basis for the construction of the mathematical model that explains the movement of tourists within the destination.
Resumo:
To obtain the desirable accuracy of a robot, there are two techniques available. The first option would be to make the robot match the nominal mathematic model. In other words, the manufacturing and assembling tolerances of every part would be extremely tight so that all of the various parameters would match the “design” or “nominal” values as closely as possible. This method can satisfy most of the accuracy requirements, but the cost would increase dramatically as the accuracy requirement increases. Alternatively, a more cost-effective solution is to build a manipulator with relaxed manufacturing and assembling tolerances. By modifying the mathematical model in the controller, the actual errors of the robot can be compensated. This is the essence of robot calibration. Simply put, robot calibration is the process of defining an appropriate error model and then identifying the various parameter errors that make the error model match the robot as closely as possible. This work focuses on kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial-parallel hybrid robot. The robot consists of a 4-DOF serial mechanism and a 6-DOF hexapod parallel manipulator. The redundant 4-DOF serial structure is used to enlarge workspace and the 6-DOF hexapod manipulator is used to provide high load capabilities and stiffness for the whole structure. The main objective of the study is to develop a suitable calibration method to improve the accuracy of the redundant serial-parallel hybrid robot. To this end, a Denavit–Hartenberg (DH) hybrid error model and a Product-of-Exponential (POE) error model are developed for error modeling of the proposed robot. Furthermore, two kinds of global optimization methods, i.e. the differential-evolution (DE) algorithm and the Markov Chain Monte Carlo (MCMC) algorithm, are employed to identify the parameter errors of the derived error model. A measurement method based on a 3-2-1 wire-based pose estimation system is proposed and implemented in a Solidworks environment to simulate the real experimental validations. Numerical simulations and Solidworks prototype-model validations are carried out on the hybrid robot to verify the effectiveness, accuracy and robustness of the calibration algorithms.
Resumo:
In this study, the transmission-line modeling (TLM) applied to bio-thermal problems was improved by incorporating several novel computational techniques, which include application of graded meshes which resulted in 9 times faster in computational time and uses only a fraction (16%) of the computational resources used by regular meshes in analyzing heat flow through heterogeneous media. Graded meshes, unlike regular meshes, allow heat sources to be modeled in all segments of the mesh. A new boundary condition that considers thermal properties and thus resulting in a more realistic modeling of complex problems is introduced. Also, a new way of calculating an error parameter is introduced. The calculated temperatures between nodes were compared against the results obtained from the literature and agreed within less than 1% difference. It is reasonable, therefore, to conclude that the improved TLM model described herein has great potential in heat transfer of biological systems.
Resumo:
American tegumentary leishmaniasis (ATL) is a disease transmitted to humans by the female sandflies of the genus Lutzomyia. Several factors are involved in the disease transmission cycle. In this work only rainfall and deforestation were considered to assess the variability in the incidence of ATL. In order to reach this goal, monthly recorded data of the incidence of ATL in Orán, Salta, Argentina, were used, in the period 1985-2007. The square root of the relative incidence of ATL and the corresponding variance were formulated as time series, and these data were smoothed by moving averages of 12 and 24 months, respectively. The same procedure was applied to the rainfall data. Typical months, which are April, August, and December, were found and allowed us to describe the dynamical behavior of ATL outbreaks. These results were tested at 95% confidence level. We concluded that the variability of rainfall would not be enough to justify the epidemic outbreaks of ATL in the period 1997-2000, but it consistently explains the situation observed in the years 2002 and 2004. Deforestation activities occurred in this region could explain epidemic peaks observed in both years and also during the entire time of observation except in 2005-2007.
Resumo:
In this work, all publicly-accessible published findings on Alicyclobacillus acidoterrestris heat resistance in fruit beverages as affected by temperature and pH were compiled. Then, study characteristics (protocols, fruit and variety, °Brix, pH, temperature, heating medium, culture medium, inactivation method, strains, etc.) were extracted from the primary studies, and some of them incorporated to a meta-analysis mixed-effects linear model based on the basic Bigelow equation describing the heat resistance parameters of this bacterium. The model estimated mean D* values (time needed for one log reduction at a temperature of 95 °C and a pH of 3.5) of Alicyclobacillus in beverages of different fruits, two different concentration types, with and without bacteriocins, and with and without clarification. The zT (temperature change needed to cause one log reduction in D-values) estimated by the meta-analysis model were compared to those ('observed' zT values) reported in the primary studies, and in all cases they were within the confidence intervals of the model. The model was capable of predicting the heat resistance parameters of Alicyclobacillus in fruit beverages beyond the types available in the meta-analytical data. It is expected that the compilation of the thermal resistance of Alicyclobacillus in fruit beverages, carried out in this study, will be of utility to food quality managers in the determination or validation of the lethality of their current heat treatment processes.
Resumo:
The caffeine solubility in supercritical CO2 was studied by assessing the effects of pressure and temperature on the extraction of green coffee oil (GCO). The Peng-Robinson¹ equation of state was used to correlate the solubility of caffeine with a thermodynamic model and two mixing rules were evaluated: the classical mixing rule of van der Waals with two adjustable parameters (PR-VDW) and a density dependent one, proposed by Mohamed and Holder² with two (PR-MH, two parameters adjusted to the attractive term) and three (PR-MH3 two parameters adjusted to the attractive and one to the repulsive term) adjustable parameters. The best results were obtained with the mixing rule of Mohamed and Holder² with three parameters.
Resumo:
Onion (Allium cepa) is one of the most cultivated and consumed vegetables in Brazil and its importance is due to the large laborforce involved. One of the main pests that affect this crop is the Onion Thrips (Thrips tabaci), but the spatial distribution of this insect, although important, has not been considered in crop management recommendations, experimental planning or sampling procedures. Our purpose here is to consider statistical tools to detect and model spatial patterns of the occurrence of the onion thrips. In order to characterize the spatial distribution pattern of the Onion Thrips a survey was carried out to record the number of insects in each development phase on onion plant leaves, on different dates and sample locations, in four rural properties with neighboring farms under different infestation levels and planting methods. The Mantel randomization test proved to be a useful tool to test for spatial correlation which, when detected, was described by a mixed spatial Poisson model with a geostatistical random component and parameters allowing for a characterization of the spatial pattern, as well as the production of prediction maps of susceptibility to levels of infestation throughout the area.
Resumo:
Below cloud scavenging processes have been investigated considering a numerical simulation, local atmospheric conditions and particulate matter (PM) concentrations, at different sites in Germany. The below cloud scavenging model has been coupled with bulk particulate matter counter TSI (Trust Portacounter dataset, consisting of the variability prediction of the particulate air concentrations during chosen rain events. The TSI samples and meteorological parameters were obtained during three winter Campaigns: at Deuselbach, March 1994, consisting in three different events; Sylt, April 1994 and; Freiburg, March 1995. The results show a good agreement between modeled and observed air concentrations, emphasizing the quality of the conceptual model used in the below cloud scavenging numerical modeling. The results between modeled and observed data have also presented high square Pearson coefficient correlations over 0.7 and significant, except the Freiburg Campaign event. The differences between numerical simulations and observed dataset are explained by the wind direction changes and, perhaps, the absence of advection mass terms inside the modeling. These results validate previous works based on the same conceptual model.
Resumo:
The enzyme purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) is an attractive molecular target for the development of novel drugs against schistosomiasis, a neglected tropical disease that affects about 200 million people worldwide. In the present work, enzyme kinetic studies were carried out in order to determine the potency and mechanism of inhibition of a series of SmPNP inhibitors. In addition to the biochemical investigations, crystallographic and molecular modeling studies revealed important molecular features for binding affinity towards the target enzyme, leading to the development of structure-activity relationships (SAR).
Resumo:
An important approach to cancer therapy is the design of small molecule modulators that interfere with microtubule dynamics through their specific binding to the ²-subunit of tubulin. In the present work, comparative molecular field analysis (CoMFA) studies were conducted on a series of discodermolide analogs with antimitotic properties. Significant correlation coefficients were obtained (CoMFA(i), q² =0.68, r²=0.94; CoMFA(ii), q² = 0.63, r²= 0.91), indicating the good internal and external consistency of the models generated using two independent structural alignment strategies. The models were externally validated employing a test set, and the predicted values were in good agreement with the experimental results. The final QSAR models and the 3D contour maps provided important insights into the chemical and structural basis involved in the molecular recognition process of this family of discodermolide analogs, and should be useful for the design of new specific ²-tubulin modulators with potent anticancer activity.
Resumo:
study-specific results, their findings should be interpreted with caution