922 resultados para Mass spectrometry
Resumo:
The thermal evolution process of RuO2–Ta2O5/Ti coatings with varying noble metal content has been investigated under in situ conditions by thermogravimetry combined with mass spectrometry. The gel-like films prepared from alcoholic solutions of the precursor salts (RuCl3·3H2O, TaCl5) onto titanium metal support were heated in an atmosphere containing 20% O2 and 80% Ar up to 600 °C. The evolution of the mixed oxide coatings was followed by the mass spectrometric ion intensity curves. The cracking of retained solvent and the combustion of organic surface species formed were also followed by the mass spectrometric curves. The formation of carbonyl- and carboxylate-type surface species connected to the noble metal was identified by Fourier transform infrared emission spectroscopy. These secondary processes–catalyzed by the noble metal–may play an important role in the development of surface morphology and electrochemical properties. The evolution of the two oxide phases does not take place independently, and the effect of the noble metal as a combustion catalyst was proved.
Resumo:
Thermogravimetric analysis-mass spectrometry, X-ray diffraction and scanning electron microscopy (SEM) were used to characterize eight kaolinite samples from China. The results show that the thermal decomposition occurs in three main steps (a) desorption of water below 100 °C, (b) dehydration at about 225 °C, (c) well defined dehydroxylation at around 450 °C. It is also found that decarbonization took place at 710 °C due to the decomposition of calcite impurity in kaolin. The temperature of dehydroxylation of kaolinite is found to be influenced by the degree of disorder of the kaolinite structure and the gases evolved in the decomposition process can be various because of the different amount and kinds of impurities. It is evident by the mass spectra that the interlayer carbonate from impurity of calcite and organic carbon is released as CO2 around 225, 350 and 710 °C in the kaolinite samples.
Resumo:
Positive and negative ion electrospray ionization (ESI) mass spectra of complexes of positively charged small molecules (distamycin, Hoechst 33258, [Ru(phen)2dpq]Cl2 and [Ru(phen)2dpqC]Cl2) have been compared. [Ru(phen)2dpq]Cl2 and [Ru(phen)2dpqC]Cl2 bind to DNA by intercalation. Negative ion ESI mass spectra of mixtures of [Ru(phen)2dpq]Cl2 or [Ru(phen)2dpqC]Cl2 with DNA showed ions from DNA-ligand complexes consistent with solution studies. In contrast, only ions from freeDNAwere present in positive ion ESI mass spectra of mixtures of [Ru(phen)2dpq]Cl2 or [Ru(phen)2dpqC]Cl2 with DNA, highlighting the need for obtaining ESI mass spectra of non-covalent complexes under a range of experimental conditions. Negative ion spectra of mixtures of the minor groove binder Hoechst 33258 with DNA containing a known minor groove binding sequence were dominated by ions from a 1:1 complex. In contrast, in positive ion spectra there were also ions present from a 2:1 (Hoechst 33258: DNA) complex, suggesting an alternative binding mode was possible either in solution or in the gas phase. When Hoechst 33258 was mixed with a DNA sequence lacking a high affinity minor groove binding site, the negative ion ESI mass spectra showed that 1:1 and 2:1 complexes were formed, consistent with existence of binding modes other than minor groove binding. The data presented suggest that comparison of positive and negative ion ESI-MS spectra might provide an insight into various binding modes in both solution and the gas phase.
Resumo:
The study of biologically active peptides is critical to the understanding of physiological pathways, especially those involved in the development of disease. Historically, the measurement of biologically active endogenous peptides has been undertaken by radioimmunoassay, a highly sensitive and robust technique that permits the detection of physiological concentrations in different biofluid and tissue extracts. Over recent years, a range of mass spectrometric approaches have been applied to peptide quantification with limited degrees of success. Neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PP) belong to the NPY family exhibiting regulatory effects on appetite and feeding behavior. The physiological significance of these peptides depends on their molecular forms and in vivo concentrations systemically and at local sites within tissues. In this report, we describe an approach for quantification of individual peptides within mixtures using high-performance liquid chromatography electrospray ionization tandem mass spectrometry analysis of the NPY family peptides. Aspects of quantification including sample preparation, the use of matrix-matched calibration curves, and internal standards will be discussed. This method for the simultaneous determination of NPY, PYY, and PP was accurate and reproducible but lacks the sensitivity required for measurement of their endogenous concentration in plasma. The advantages of mass spectrometric quantification will be discussed alongside the current obstacles and challenges. © 2012 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 98: 357–366, 2012.
Resumo:
Vehicle emissions have been linked to detrimental health effects with children thought to be more susceptible (See e.g., Ryan et al 2005). In an urban environment a major source of organic aerosols (OA) are vehicle emissions. The ambient concentration of OA is dynamic in nature and the use of an aerosol mass spectrometer can achieve the necessary temporal resolution to capture the daily variation of OA (Jimenez et al 2009). Currently there is a limited understanding of effects of long term exposure to traffic emissions on children’s health. In the present study, we used an aerosol mass spectrometer to monitor OA and determine children’s potential exposure at school to traffic emissions.In this paper, we present the preliminary results of this investigation. The study is a part of a larger project aimed at gaining a holistic picture of the exposure of children to traffic related pollutants, known as UPTECH (www.ilaqh.qut.edu.au/Misc/ UPTECH%20Home.htm).
Resumo:
Currently, mass spectrometry-based metabolomics studies extend beyond conventional chemical categorization and metabolic phenotype analysis to understanding gene function in various biological contexts (e.g., mammalian, plant, and microbial). These novel utilities have led to many innovative discoveries in the following areas: disease pathogenesis, therapeutic pathway or target identification, the biochemistry of animal and plant physiological and pathological activities in response to diverse stimuli, and molecular signatures of host-pathogen interactions during microbial infection. In this review, we critically evaluate the representative applications of mass spectrometry-based metabolomics to better understand gene function in diverse biological contexts, with special emphasis on working principles, study protocols, and possible future development of this technique. Collectively, this review raises awareness within the biomedical community of the scientific value and applicability of mass spectrometry-based metabolomics strategies to better understand gene function, thus advancing this application's utility in a broad range of biological fields
Resumo:
This paper was designed to study metabonomic characters of the hepatotoxicity induced by alcohol and the intervention effects of Yin Chen Hao Tang (YCHT), a classic traditional Chinese medicine formula for treatment of jaundice and liver disorders in China. Urinary samples from control, alcohol- and YCHT-treated rats were analyzed by ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) in positive ionization mode. The total ion chromatograms obtained from the control, alcohol- and YCHT-treated rats were easily distinguishable using a multivariate statistical analysis method such as the principal components analysis (PCA). The greatest difference in metabolic profiling was observed from alcohol-treated rats compared with the control and YCHT-treated rats. The positive ions m/z 664.3126 (9.00 min) was elevated in urine of alcohol-treated rats, whereas, ions m/z 155.3547 (10.96 min) and 708.2932 (9.01 min) were at a lower concentration compared with that in urine of control rats, however, these ions did not indicate a statistical difference between control rats and YCHT-treated rats. The ion m/z 664.3126 was found to correspond to ceramide (d18:1/25:0), providing further support for an involvement of the sphingomyelin signaling pathway in alcohol hepatotoxicity and the intervention effects of YCHT.
Resumo:
Scoparone (6,7-dimethoxycoumarin) is known to have a wide range of pharmacological properties. In this study, a rapid and validated ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-QTof-MS) method was developed to investigate the metabolism of scoparone in rat for the first time. The new method reduced the sample handling and analytical time by three- to six-fold, and the detection limit by five- to 1000-fold, compared to published methods. Far more metabolites were detected and identified compared to published data, which were preliminarily identified as scopoletin, isoscopoletin, isofraxidin, and fraxidin, respectively, when subjected to tandem mass spectrometry analyses. It is found that the metabolic trajectory of scoparone in rat focused on phase I metabolism which is obviously different from published results, and revealed a wide range of pharmacological properties of scoparone partly attributed to the bioactivities of its metabolites.
Resumo:
Liuwei Dihuang Wan (LWD), a classic Chinese medicinal formulae, has been used to improve or restore declined functions related to aging and geriatric diseases, such as impaired mobility, vision, hearing, cognition and memory. It has attracted increasingly much attention as one of the most popular and valuable herbal medicines. However, the systematic analysis of the chemical constituents of LDW is difficult and thus has not been well established. In this paper, a rapid, sensitive and reliable ultra-performance liquid chromatography with electrospray ionization quadrupole time-of-flight high-definition mass spectrometry (UPLC-ESI-Q-TOF-MS) method with automated MetaboLynx analysis in positive and negative ion mode was established to characterize the chemical constituents of LDW. The analysis was performed on a Waters UPLCTM HSS T3 using a gradient elution system. MS/MS fragmentation behavior was proposed for aiding the structural identification of the components. Under the optimized conditions, a total of 50 peaks were tentatively characterized by comparing the retention time and MS data. It is concluded that a rapid and robust platform based on UPLC-ESI-Q-TOF-MS has been successfully developed for globally identifying multiple-constituents of traditional Chinese medicine prescriptions. This is the first report on systematic analysis of the chemical constituents of LDW. This article is protected by copyright. All rights reserved.
Resumo:
Aerosol mass spectrometers (AMS) are powerful tools in the analysis of the chemical composition of airborne particles, particularly organic aerosols which are gaining increasing attention. However, the advantages of AMS in providing on-line data can be outweighed by the difficulties involved in its use in field measurements at multiple sites. In contrast to the on-line measurement by AMS, a method which involves sample collection on filters followed by subsequent analysis by AMS could significantly broaden the scope of AMS application. We report the application of such an approach to field studies at multiple sites. An AMS was deployed at 5 urban schools to determine the sources of the organic aerosols at the schools directly. PM1 aerosols were also collected on filters at these and 20 other urban schools. The filters were extracted with water and the extract run through a nebulizer to generate the aerosols, which were analysed by an AMS. The mass spectra from the samples collected on filters at the 5 schools were found to have excellent correlations with those obtained directly by AMS, with r2 ranging from 0.89 to 0.98. Filter recoveries varied between the schools from 40 -115%, possibly indicating that this method provides qualitative rather than quantitative information. The stability of the organic aerosols on Teflon filters was demonstrated by analysing samples stored for up to two years. Application of the procedure to the remaining 20 schools showed that secondary organic aerosols were the main source of aerosols at the majority of the schools. Overall, this procedure provides accurate representation of the mass spectra of ambient organic aerosols and could facilitate rapid data acquisition at multiple sites where AMS could not be deployed for logistical reasons.
Resumo:
The detailed characterization of protein N-glycosylation is very demanding given the many different glycoforms and structural isomers that can exist on glycoproteins. Here we report a fast and sensitive method for the extensive structure elucidation of reducing-end labeled N-glycan mixtures using a combination of capillary normal-phase HPLC coupled off-line to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and TOF/TOF-MS/MS. Using this method, isobaric N-glycans released from honey bee phospholipase A2 and Arabidopsis thaliana glycoproteins were separated by normal-phase chromatography and subsequently identified by key fragment ions in the MALDI-TOF/TOF tandem mass spectra. In addition, linkage and branching information were provided by abundant cross-ring and "elimination" fragment ions in the MALDI-CID spectra that gave extensive structural information. Furthermore, the fragmentation characteristics of N-glycans reductively aminated with 2-aminobenzoic acid and 2-aminobenzamide were compared. The identification of N-glycans containing 3-linked core fucose was facilitated by distinctive ions present only in the MALDI-CID spectra of 2-aminobenzoic acid-labeled oligosaccharides. To our knowledge, this is the first MS/MS-based technique that allows confident identification of N-glycans containing 3-linked core fucose, which is a major allergenic determinant on insect and plant glycoproteins.
Resumo:
Recent expansion in research in the field of lipidomics has been driven by the development of new mass spectrometric tools and protocols for the identification and quantification of molecular lipids in complex matrices. Although there are similarities between the field of lipidomics and the allied field of mass spectrometry (e.g., proteomics), lipids present some unique advantages and challenges for mass spectrometric analysis. The application of electrospray ionization to crude lipid extracts without prior fractionation-the so-called shotgun approach-is one such example, as it has perhaps been more successfully applied in lipidomics than in any other discipline. Conversely, the diverse molecular structure of lipids means that collision-induced dissociation alone may be limited in providing unique descriptions of complex lipid structures, and the development of additional, complementary tools for ion activation and analysis is required to overcome these challenges. In this article, we discuss the state of the art in lipid mass spectrometry and highlight several areas in which current approaches are deficient and further innovation is required.