932 resultados para Marine sciences.
Resumo:
This report is divided into six sections, the first of which provides information on documents that emphasize the need for education/training of minorities in the sciences including marine science. Also provided is material students can use to find out about careers in the sciences, some universities that offer marine science education, and curricula that should be considered. The second section deals with existing programs designed to train pre-college students and prepare them either for further education or potential employment in the sciences. The next four sections deal with existing programs in the marine sciences for college-level students, scholarships and scholarship programs, examples of loan programs, and internships and internship programs.
Resumo:
"January 1960."
Resumo:
Notebook of practical activities in Ecology during the 2on course of Biology career.
Resumo:
Exploring climate and anthropogenic impacts on marine ecosystems requires an understanding of how trophic components interact. However, integrative end-to-end ecosystem studies (experimental and/or modelling) are rare. Experimental investigations often concentrate on a particular group or individual species within a trophic level, while tropho-dynamic field studies typically employ either a bottom-up approach concentrating on the phytoplankton community or a top-down approach concentrating on the fish community. Likewise the emphasis within modelling studies is usually placed upon phytoplankton-dominated biogeochemistry or on aspects of fisheries regulation. In consequence the roles of zooplankton communities (protists and metazoans) linking phytoplankton and fish communities are typically under-represented if not (especially in fisheries models) ignored. Where represented in ecosystem models, zooplankton are usually incorporated in an extremely simplistic fashion, using empirical descriptions merging various interacting physiological functions governing zooplankton growth and development, and thence ignoring physiological feedback mechanisms. Here we demonstrate, within a modelled plankton food-web system, how trophic dynamics are sensitive to small changes in parameter values describing zooplankton vital rates and thus the importance of using appropriate zooplankton descriptors. Through a comprehensive review, we reveal the mismatch between empirical understanding and modelling activities identifying important issues that warrant further experimental and modelling investigation. These include: food selectivity, kinetics of prey consumption and interactions with assimilation and growth, form of voided material, mortality rates at different age-stages relative to prior nutrient history. In particular there is a need for dynamic data series in which predator and prey of known nutrient history are studied interacting under varied pH and temperature regimes.
Resumo:
During the course of chemical investigation of marine algae collected from Karachi coast of Arabian Sea, five sterols named as sarangosterol(1), 23-methyl cholesta-5, 25-dien-3ß-ol(2) from Endarachne binghamiae (brown alga), sargasterol(3) from Dictyota indica (brown alga), cholesterol(4) from Laurencia obtusa (red alga) and clerosterol(5) from Codium iyengarii (green alga) have been isolated. Their structures were elucidated with the help of spectroscopic means.
Resumo:
Sinum haliotoideum (Linnaeus, 1758) was collected on only two occasions. However, it was given attention when the recently collected specimen netted on 24 August, 1993 was brought live to the laboratory where its movement towards the source of light was noticed, leading to a careful examination and illustration. The specimen survived for 4 days. Illustrations and shell from the earlier collected specimen (August, 1991) were sent to Dr. Alan R. Kabat, division of Mollusck, National Museum of Natural History, Smithsonian Institution, USA, who confirmed that the specimen was Sinum haliotoideum (Linnaeus, 1758). He further informed that this is a moderately common Indo-Pacific species. The material has been deposited in the collections of the Marine Reference Collection and Resource Centre. (MRC) The species being new to the region is briefly described.
Resumo:
Helicnonema savala, n.sp. obtained from the marine fish, Lepturacanthus savala in Sindh coast is distinguished from members of the genus processing in the male 10 tessellated longtitudinal ridges and a spicule ratio 1:15. Females have vulvular flap. Heliconema savala is a morphologically most closely related to Heliconema heliconema. The marine fish, Psettodes erumei is recorded as a new host of Bulbocephalus inglisi.
Resumo:
This study deals with seasonal variations, natural correlations and similarities of fouling assemblages on exposure panels in the Suez Bay during January 1992 to January 1993. Three main sources of pollutions flow into the bay; industrial waste products, domestic drainage of Suez city and ships' oil and refuse.The fouling assemblages on the test pan els after various periods (1, 2 and 3 months) belonged mainly to the algae (Ulva rigida), polychaetes (Hydroides elegans), Cirripedes (Balanus amphitrite) and amphipods. The fouling at the lst station was relatively more dense than at the 2nd station during the summer and autumn seasons. The lowest productivity was achieved at the 3rd station which was considered less polluted being offshore water. The overall paucity of fouling in the bay is because of the silt covering the submerged surfaces, particularly at the 2nd station, leading to the prevention of the settlements or establishment of fouling organisms. The seasonal changes in the intensity of fouling assemblages on submerged surfaces in seawater seems to be closely related to seasonal variations in water temperature. The great fouling communities on the buoys and long exposure panels showed a remarkable variety of species and density rather than on short term exposures, which were more dense during warmer months.
Resumo:
The marine environment covers three quarters of the surface of the planet is estimated to be home to more than 80% of life and yet it remains largely unexplored. The rich diversity of marine flora and fauna and its adaptation to the harsh marine environment coupled with new developments in biotechnology, has opened up a new exciting vista for extraction of bioactive products of use in medicine. In this study inhibitory activity of a marine bacterium isolated from gut of ribbonfish was studied against pathogenic and environmental isolates of Vibrio species. This strain was identified as Pseudomonas stutzeri and it was found active against V. harveyi (luminescent bacteria), V. cholerae, V. alginolyticus, V. damseal, V. fluvialis. The antibacterial substance produced by Pseudomonas stutzeri was soluble in organic solvent and closely bound to external surface of bacterial cells. Reduction of the absorbance of the V. cholera cell suspension was observed when log phase cells of V. cholerae were treated with MIC and 4xMIC concentration of crude extract of Pseudomonas stutzeri.
Mass culture of marine diatom Skeletonema costatum (Greville) Cleve collected from the Bay of Bengal
Resumo:
The growth of Skeletonema costatum in two artificial nutrient media was studied using various culture vessels. Skeletonema costatum was collected from the Cox's Bazar coast around the Bay of Bengal. Different growths stages i.e. lag phase, exponential phase, prestationary phase, stationary and death phase were observed during the culture period. The number of cells increased during the active division period and decreased after the beginning of the prestationary phase. The average densities of S. costatum in primary and secondary cultures were 0.55 x 10 super(6) cells mlˉ¹ and 0.93x10 super(6) cells mlˉ¹, respectively. In mass culture of S. costatum two, types of media were used. Highest cells densities of S. costatum cement tank culture were recorded 1.23x10 super(6) cell mlˉ¹ and 0.78x10 super(6) cells mlˉ¹ in their respective f/4 medium and commercial fertilizer medium. In the cement tanks culture fertilizer medium was found to be the best medium for mass culture of S. costatum in respect of production efficiency and culture stability.
Resumo:
Three species of caligid copepods (Siphonostomatoida) belonging to genus Hermilius Heller, 1865 were recovered from the giant marine catfish, Arius thalassinus Ruppell, taken from the Persian Gulf. They are H. pyriventris Heller, 1865; H. longicaudus n. sp.; and H. longicornis Bassett-Smith, 1898. H helleri Pillai, 1963 is proposed to be relegated to the synonym of H pyriventris. A key to the eight species of Hermilius is provided.
Resumo:
Over the past 50 years, economic and technological developments have dramatically increased the human contribution to ambient noise in the ocean. The dominant frequencies of most human-made noise in the ocean is in the low-frequency range (defined as sound energy below 1000Hz), and low-frequency sound (LFS) may travel great distances in the ocean due to the unique propagation characteristics of the deep ocean (Munk et al. 1989). For example, in the Northern Hemisphere oceans low-frequency ambient noise levels have increased by as much as 10 dB during the period from 1950 to 1975 (Urick 1986; review by NRC 1994). Shipping is the overwhelmingly dominant source of low-frequency manmade noise in the ocean, but other sources of manmade LFS including sounds from oil and gas industrial development and production activities (seismic exploration, construction work, drilling, production platforms), and scientific research (e.g., acoustic tomography and thermography, underwater communication). The SURTASS LFA system is an additional source of human-produced LFS in the ocean, contributing sound energy in the 100-500 Hz band. When considering a document that addresses the potential effects of a low-frequency sound source on the marine environment, it is important to focus upon those species that are the most likely to be affected. Important criteria are: 1) the physics of sound as it relates to biological organisms; 2) the nature of the exposure (i.e. duration, frequency, and intensity); and 3) the geographic region in which the sound source will be operated (which, when considered with the distribution of the organisms will determine which species will be exposed). The goal in this section of the LFA/EIS is to examine the status, distribution, abundance, reproduction, foraging behavior, vocal behavior, and known impacts of human activity of those species may be impacted by LFA operations. To focus our efforts, we have examined species that may be physically affected and are found in the region where the LFA source will be operated. The large-scale geographic location of species in relation to the sound source can be determined from the distribution of each species. However, the physical ability for the organism to be impacted depends upon the nature of the sound source (i.e. explosive, impulsive, or non-impulsive); and the acoustic properties of the medium (i.e. seawater) and the organism. Non-impulsive sound is comprised of the movement of particles in a medium. Motion is imparted by a vibrating object (diaphragm of a speaker, vocal chords, etc.). Due to the proximity of the particles in the medium, this motion is transmitted from particle to particle in waves away from the sound source. Because the particle motion is along the same axis as the propagating wave, the waves are longitudinal. Particles move away from then back towards the vibrating source, creating areas of compression (high pressure) and areas of rarefaction (low pressure). As the motion is transferred from one particle to the next, the sound propagates away from the sound source. Wavelength is the distance from one pressure peak to the next. Frequency is the number of waves passing per unit time (Hz). Sound velocity (not to be confused with particle velocity) is the impedance is loosely equivalent to the resistance of a medium to the passage of sound waves (technically it is the ratio of acoustic pressure to particle velocity). A high impedance means that acoustic particle velocity is small for a given pressure (low impedance the opposite). When a sound strikes a boundary between media of different impedances, both reflection and refraction, and a transfer of energy can occur. The intensity of the reflection is a function of the intensity of the sound wave and the impedances of the two media. Two key factors in determining the potential for damage due to a sound source are the intensity of the sound wave and the impedance difference between the two media (impedance mis-match). The bodies of the vast majority of organisms in the ocean (particularly phytoplankton and zooplankton) have similar sound impedence values to that of seawater. As a result, the potential for sound damage is low; organisms are effectively transparent to the sound – it passes through them without transferring damage-causing energy. Due to the considerations above, we have undertaken a detailed analysis of species which met the following criteria: 1) Is the species capable of being physically affected by LFS? Are acoustic impedence mis-matches large enough to enable LFS to have a physical affect or allow the species to sense LFS? 2) Does the proposed SURTASS LFA geographical sphere of acoustic influence overlap the distribution of the species? Species that did not meet the above criteria were excluded from consideration. For example, phytoplankton and zooplankton species lack acoustic impedance mis-matches at low frequencies to expect them to be physically affected SURTASS LFA. Vertebrates are the organisms that fit these criteria and we have accordingly focused our analysis of the affected environment on these vertebrate groups in the world’s oceans: fishes, reptiles, seabirds, pinnipeds, cetaceans, pinnipeds, mustelids, sirenians (Table 1).
Resumo:
A 64-page catalogue of material in the MBA Archive Collection containing details of documents, records, and personal papers relating to the history and development of the Marine Biological Association.
Resumo:
The UK and EU have recently committed to an ecosystem-based approach to the management of our marine environment. In line with the requirements of the Habitats regulations, all consents likely to significantly affect Special Areas of Conservation (SACs) and Special Protection Areas (SPAs) are to be reviewed. As part of this process, 'site characterisation' is seen as an important first step towards the improved management of designated sites. This characterisation series, undertaken by the Marine Biological Association of the United Kingdom and funded by the Environment Agency and English Nature, sets out to determine the current status of designated marine sites in South West England, and how vulnerable (or robust) they are to contaminants (metals, organics, nutrients) and other anthropogenic pressures. Using published information and unpublished data-sets from regulatory agencies, conservation bodies and research institutes (particularly those of the PMPS*), evidence is compiled on the links between potentially harmful 'activities', environmental quality, and resultant biological consequences. This includes an evaluation of long-term change. The focus is the effect of water and sediment quality on the key interest features of European Marine sites in the South West of England, namely: - Fal and Helford cSAC (MBA Occasional Publication 8) - Plymouth Sound and Estuaries cSAC/ SPA (MBA Occasional Publication 9) - Exe Estuary SPA (MBA Occasional Publication 10) - Chesil and the Fleet cSAC/ SPA (MBA Occasional Publication 11) - Poole Harbour SPA (MBA Occasional Publication 12) - Severn Estuary pSAC/SPA (MBA Occasional Publication 13) Detailed analysis for each of these sites is provided individually. The summary report contains an overview of physical properties, uses and vulnerability for each of these sites, together with brief comparisons of pollution sources, chemical exposure (via sediment and water) and evidence of biological impact (from bioaccumulation to community-level response). Limitations of the data, and gaps in our understanding of these systems are highlighted and suggestions are put forward as to where future research and surveillance is most needed. Hopefully this may assist the statutory authorities in targeting future monitoring and remedial activities. * PMSP: Plymouth Marine Sciences Partnership, comprising the Marine Biological Association (MBA), University of Plymouth (UoP), the Sir Alister Hardy Foundation for Ocean Science, and Plymouth Marine Laboratories (PML)