980 resultados para Mangrove sediments


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Red mangrove (Rhizophora mangle L.) forests have distinct tree-height zones, with tall trees fringing the ocean and shorter trees in interior stands. A long-term nitrogen (N) and phosphorus (P) fertilization experiment in Almirante Bay, Bocas del Toro Province, Panama has shown that tree-height zonation is primarily related to nutrient limitation. This experiment was used to test the effects of in-situ nutrient additions and tree zonation on mangrove sediments. The sediments underlying the experimental R. mangle trees were sampled and N2 fixation, 15N, chlorophyll a, percent N and P, and percent organic biomass were quantified. Both N and P additions significantly affected almost every parameter measured in both zones within this experiment. These results are likely to have implications for management since N and P inputs are predicted to increase throughout the tropics and subtropics worldwide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biogeochemistry of arsenic (As) in sediments is regulated by multiple factors such as particle size, dissolved organic matter (DOM), iron mobilization, and sediment binding characteristics, among others. Understanding the heterogeneity of factors affecting As deposition and the kinetics of mobilization, both horizontally and vertically, across sediment depositional environments was investigated in Sundarban mangrove ecosystems, Bengal Delta, Bangladesh. Sediment cores were collected from 3 different Sundarbans locations and As concentration down the profiles were found to be more associated with elevated Fe and Mn than with organic matter (OM). At one site chosen for field monitoring, sediment cores, pore and surface water, and in situ diffusive gradients in thin films (DGT) measurements (which were used to model As sediment pore-water concentrations and resupply from the solid phase) were sampled from four different subhabitats. Coarse-textured riverbank sediment porewaters were high in As, but with a limited resupply of As from the solid phase compared to fine-textured and high organic matter content forest floor sediments, where porewater As was low, but with much higher As resupply. Depositional environment (overbank verses forest floor) and biological activity (input of OM from forest biomass) considerably affected As dynamics over very short spatial distances in the mosaic of microhabitats that constitute a mangrove ecosystem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mangrove swamps are unique inter-tidal wetland ecosystems found in sheltered tropical and subtropical shores.Mangrove sediments can be considered as large reservoirs of amino acids,which exist in several different forms,like free amino acids in the sediment micropores,as amino acids,peptides or proteins bound to clay minerals or as amino acids,peptides or proteins bound to humic colloids.Inorder to assess survival conditions of organisms of mangroves,it is important to understand stability of amino acids in the sediments.The amounts of amino acids present in sediment represent a balance between its synthesis and destruction by microorganisms.Thus amino acid analysis offers more insight into the processes of diagenesis,which changes the nature and characteristics of organic matter deposition and decomposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biogeochemistry of mangroves are the least understood ecological properties because of their sediment complexicity due to the tidal influx of allochthonous organic matter and the autochthonous inputs.In order to understand the relative importance of biogeochemical processes,it is necessary not only to characterise and qualify the organic matter but also to identify its major sources .The present study is a preliminary investigation to identify the sources of organic matter in three mangrove systems of Cochin Estuary using fatty acid biomarkers,δ13 C of total organic matter,elemental composition and biochemical composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis entitled “Sterols in Mangrove Sediments of the Cochin Estuary” is an attempt to characterize the sterol content of the mangrove sediments, their dietary status with respect to the natural flora and fauna present, their transfonnations in the sediment and assess contributions, if any to the nursery character of the mangrove eco system. Samplings were done from two sites at Mangalavanam and Vypin. Mangalavanam is a patchy mangrove area in the heart of the city of Cochin and serves as a small bird sanctuary. This is an almost closed system with a single narrow canal linking to the estuary. Vypin, the largest single stretch of mangroves in Kerala, is regularly inundated by a semi diurnal rhythm of Cochin bar mouth. Perhaps, this is the only site in Kerala where one can see mangroves right along the accreting seacoast. However a lot of developmental pressure is threatening the very existence of these mangroves. Post monsoon sediment samples from these areas were used for the present study, as it is the period of maximum faunal growth and activity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil community genomics or metagenomics is employed in this study to analyze the evolutionary related - ness of mangrove microbial community. The metagenomic DNA was isolated from mangrove sediment and 16SrDNA was amplified using universal primers. The amplicons were ligated into pTZ57R/T cloning vector and transformed onto E. coli JM109 host cells. The recombinant plasmids were isolated from positive clones and the insert was confirmed by its reamplification. The amplicons were subjected to Amplified Ribosomal DNA Restriction Analysis (ARDRA) using three different tetra cutter restriction enzymes namely Sau3A1, Hha1 and HpaII. The 16SrDNA insert were sequenced and their identity was determined. The sequences were submitted to NCBI database and accession numbers obtained. The phylo - genetic tree was constructed based on Neighbor-Joining technique. Clones belonged to two major phyla of the bacterial domain, namely Firmicutes and Proteobacteria, with members of Firmicutes predominating. The microbial diversity of the mangrove sediment was explored in this manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we embark in a deep metagenomic survey that revealed the taxonomic and potential metabolic pathways aspects of mangrove sediment microbiology. The extraction of DNA from sediment samples and the direct application of pyrosequencing resulted in approximately 215 Mb of data from four distinct mangrove areas (BrMgv01 to 04) in Brazil. The taxonomic approaches applied revealed the dominance of Deltaproteobacteria and Gammaproteobacteria in the samples. Paired statistical analysis showed higher proportions of specific taxonomic groups in each dataset. The metabolic reconstruction indicated the possible occurrence of processes modulated by the prevailing conditions found in mangrove sediments. In terms of carbon cycling, the sequences indicated the prevalence of genes involved in the metabolism of methane, formaldehyde, and carbon dioxide. With respect to the nitrogen cycle, evidence for sequences associated with dissimilatory reduction of nitrate, nitrogen immobilization, and denitrification was detected. Sequences related to the production of adenylsulfate, sulfite, and H2S were relevant to the sulphur cycle. These data indicate that the microbial core involved in methane, nitrogen, and sulphur metabolism consists mainly of Burkholderiaceae, Planctomycetaceae, Rhodobacteraceae, and Desulfobacteraceae. Comparison of our data to datasets from soil and sea samples resulted in the allotment of the mangrove sediments between those samples. The results of this study add valuable data about the composition of microbial communities in mangroves and also shed light on possible transformations promoted by microbial organisms in mangrove sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of Sao Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study focused on the structure and composition of archaeal communities in sediments of tropical mangroves in order to obtain sufficient insight into two Brazilian sites from different locations (one pristine and another located in an urban area) and at different depth levels from the surface. Terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene fragments was used to scan the archaeal community structure, and 16S rRNA gene clone libraries were used to determine the community composition. Redundancy analysis of T-RFLP patterns revealed differences in archaeal community structure according to location, depth and soil attributes. Parameters such as pH, organic matter, potassium and magnesium presented significant correlation with general community structure. Furthermore, phylogenetic analysis revealed a community composition distributed differently according to depth where, in shallow samples, 74.3% of sequences were affiliated with Euryarchaeota and 25.7% were shared between Crenarchaeota and Thaumarchaeota, while for the deeper samples, 24.3% of the sequences were affiliated with Euryarchaeota and 75.7% with Crenarchaeota and Thaumarchaeota. Archaeal diversity measurements based on 16S rRNA gene clone libraries decreased with increasing depth and there was a greater difference between depths (<18% of sequences shared) than sites (>25% of sequences shared). Taken together, our findings indicate that mangrove ecosystems support a diverse archaeal community; it might possibly be involved in nutrient cycles and are affected by sediment properties, depth and distinct locations. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mangroves are diverse group of trees, palms, shrubs, and ferns that share a common ability to live in waterlogged saline soils exposed to regular flooding, and are highly specialised plants which have developed unusual adaptations to the unique environmental conditions. They are sites of accumulation and preservation of both allochthonous and autochthonous organic matter owing to their strategic loction at the interface between land and sea and prevailing reducing environment. They are among the most productive ecosystems and are efficient carbon sinks with most of the carbon stored in sediments.Mangrove ecosystems play a significant role in global carbon cycle and hence the knowledge on the processes controlling the delivery of organic matter to coastal sediments, and how these signatures are preserved in the sediment is a prerequisite for the understanding of biogeochemical cycles. The evaluation of nature and sources of organic matter can be accomplished by the determination of biochemical constituents like carbohydrates, proteins and lipids. When characterised at molecular level, lipids provide valuable information about the sources of organic matter, even though they account only small fraction of organic matter. They are useful for the paleo-environmental reconstruction because of their low reactivity, high preservation potential and high source specificity relative to other organic class of compounds. The application of recent analytical techniques has produced a wealth of useful information but has also indicated the gaps in our knowledge on cycling of organic matter in the coastal ecosystems. The quantity and quality of organic matter preserved in sediments vary depending up on the nature of material delivered to the sediment and on the depositional environment. The input from both autochthonous and allochthonous sources sharpens the complexity of biogeochemistry of mangrove ecosystem and hence bulk sedimentary parameters are not completely successful in evaluating the sources of organic matter in mangrove sediments. An effective tool for the source characterisation of organic matter in coastal ecosystems is biomarker approach. Biomarkers are chemical "signatures" present in environmental samples whose structural information can be linked to its biological precursor. The usefulness of molecular biomarkers depends on high taxonomic specificity, potential for preservation, recalcitrant against geochemical changes, easily analysable in environmental samples and should have a limited number of well-defined sources.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sulphur is a non conservative major element and is the most active species in the redox processes in nature, especially in aquatic environment . The varying oxidative states from-2 to +6 make it possible to enter into many of the biogeochemical processes. Thus the history, present and future of the chemical composition and behaviour of the natural aquatic systems and sediments have footprints of the sulphur chemistry.Mangroves are considered to be the most productive, fishery supportive ecosystem operating in the intertidal regions. The interlinking of the mangroves with the sulphur chemistry is attempted here.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Department of Chemical Oceanography,Cochin University of Science and Technology

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present study on "Microbial production of antibiotics from mangrove ecosystem” was carried out for a period of one year in four selected Stations, Mangalavana, Narakkal, Puthuvyppu and light house area of Puthuvyppu (9°55' — 10°10'N and 76°10‘ - 76°20'E) from January to December 1991. Though much emphasis has been given to occurrence and distribution of actinomycetes, an attempt was also made to understand the distribution patterns of other micro flora in the sediments. Data on physico-chemical parameters were also collected to find out their relationship if any with the microflora. The principle interest of the present investigation is to determineseasonal variations of antagonistic actinomycetes in selected mangrove ecosystem. The microbial interrelationship in mangrove sediments was found out by constructing the ratio between bacteria and actinomycetes, bacteria and fungi, fungi and actinomycetes. In addition temperature, pH, salinity, dissolved oxygen and organic carbon were determined seasonally and their possible relationship was statistically analyzed and the results are presented. Isolated actinomycetes were subjected to cross streak assay to know their nature of antibiotic activity against test fish pathogens and crude antibiotics were extracted from selected isolates and their inhibitory activity is studied and the results are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mangroves are considered to play a significant role in global carbon cycling. Themangrove forests would fix CO2 by photosynthesis into mangrove lumber and thus decrease the possibility of a catastrophic series of events - global warming by atmospheric CO2, melting of the polar ice caps, and inundation of the great coastal cities of the world. The leaf litter and roots are the main contributors to mangrove sediments, though algal production and allochthonous detritus can also be trapped (Kristensen et al, 2008) by mangroves due to their high organic matter content and reducing nature are excellent metal retainers. Environmental pollution due to metals is of major concern. This is due to the basic fact that metals are not biodegradable or perishable the way most organic pollutants are. While most organic toxicants can be destroyed by combustion and converted into compounds such as C0, C02, SOX, NOX, metals can't be destroyed. At the most the valance and physical form of metals may change. Concentration of metals present naturally in air, water and soil is very low. Metals released into the environment through anthropogenic activities such as burning of fossils fuels, discharge of industrial effluents, mining, dumping of sewage etc leads to the development of higher than tolerable or toxic levels of metals in the environment leading to metal pollution. Of course, a large number of heavy metals such as Fe, Mn, Cu, Ni, Zn, Co, Cr, Mo, and V are essential to plants and animals and deficiency of these metals may lead to diseases, but at higher levels, it would lead to metal toxicity. Almost all industrial processes and urban activities involve release of at least trace quantities of half a dozen metals in different forms. Heavy metal pollution in the environment can remain dormant for a long time and surface with a vengeance. Once an area gets toxified with metals, it is almost impossible to detoxify it. The symptoms of metal toxicity are often quite similar to the symptoms of other common diseases such as respiratory problems, digestive disorders, skin diseases, hypertension, diabetes, jaundice etc making it all the more difficult to diagnose metal poisoning. For example the Minamata disease caused by mercury pollution in addition to affecting the nervous system can disturb liver function and cause diabetes and hypertension. The damage caused by heavy metals does not end up with the affected person. The harmful effects can be transferred to the person's progenies. Ironically heavy metal pollution is a direct offshoot of our increasing ability to mass produce metals and use them in all spheres of existence. Along with conventional physico- chemical methods, biosystem approachment is also being constantly used for combating metal pollution