930 resultados para MULTILAYER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of c-axis oriented Y1Ba2Cu 3Ox thin films on an amorphous buffer layer of Y-ZrO 2, deposited on sapphire substrates, was investigated. Both films were grown by a pulsed laser deposition technique. A strong correlation was observed between the properties of Y1Ba2Cu 3Ox and the thickness of the buffer layer. A Tc of 89 K was obtained for an optimal buffer layer thickness of 9 nm. A model that adequately describes the film growth process was developed. A multilayer system of Y1Ba2Cu3Ox and amorphous Y-ZrO2 was grown and a Tc of 87 K for the upper c-axis oriented layer was measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective control of dense, high-quality carbon nanotube arrays using hierarchical multilayer catalyst patterns is demonstrated. Scanning/transmission electron microscopy, atomic force microscopy, Raman spectroscopy, and numerical simulations show that by changing the secondary and tertiary layers one can control the properties of the nanotube arrays. The arrays with the highest surface density of vertically aligned nanotubes are produced using a hierarchical stack of iron nanoparticles and alumina and silica layers differing in thickness by one order of magnitude from one another. The results are explained in terms of the catalyst structure effect on carbon diffusivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flexible multilayer electrodes that combine high transparency, high conductivity, and efficient charge extraction have been deposited, characterised and used as the anode in organic solar cells. The anode consists of an AZO/Ag/AZO stack plus a very thin oxide interlayer whose ionization potential is fine-tuned by manipulating its gap state density to optimise charge transfer with the bulk heterojunction active layer consisting of poly(n-3- hexylthiophene-2,5-diyl) and phenyl-C61-butyric acid methyl ester (P3HT:BC61BM). The deposition method for the stack was compatible with the low temperatures required for polymer substrates. Optimisation of the electrode stack was achieved by modelling the optical and electrical properties of the device and a power conversion efficiency of 2.9% under AM1.5 illumination compared to 3.0% with an ITO-only anode and 3.5% for an ITO:PEDOT electrode. Dark I-V reverse bias characteristics indicate very low densities of occupied buffer states close to the HOMO level of the hole conductor, despite observed ionization potential being high enough. Their elimination should raise efficiency to that with ITO:PEDOT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the microstructural evolution of multiple layers of elastically stiff films embedded in an elastically soft matrix using a phase field model. The coherent and planar film/matrix interfaces are rendered unstable by the elastic stresses due to a lattice parameter mismatch between the film and matrix phases, resulting in the break-up of the films into particles. With an increasing volume fraction of the stiff phase, the elastic interactions between neighbouring layers lead to: (i) interlayer correlations from an early stage; (ii) a longer wavelength for the maximally growing wave; and therefore (iii) a delayed break-LIP. Further, they promote a crossover in the mode of instability from a predominantly anti-symmetric (in phase) one to a symmetric (out of phase) one. We have computed a stability diagram for the most probable mode of break-up in terms of elastic modulus Mismatch and Volume fraction. We rationalize our results in terms of the initial driving force for destabilization, and corroborate our conclusions using simulations in elastically anisotropic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A lattice-gas model of multilayer adsorption has been solved in the mean-field approximation by a different numerical method. Earlier workers obtained a single solution for all values of temperature and pressure. In the present work, multiple solutions have been obtained in certain regions of temperature and pressure which give rise to bysteresis in the adsorption isotherm. In addition, we have obtained a parameter which behaves like an order parameter for the transition. The potential-energy function shows a double minimum in the region of bysteresis and a single maximum elsewhere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present low-frequency electrical resistance fluctuations, or noise, in graphene-based field-effect devices with varying number of layers. In single-layer devices, the noise magnitude decreases with increasing carrier density, which behaved oppositely in the devices with two or larger number of layers accompanied by a suppression in noise magnitude by more than two orders in the latter case. This behavior can be explained from the influence of external electric field on graphene band structure, and provides a simple transport-based route to isolate single-layer graphene devices from those with multiple layers. ©2009 American Institute of Physics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fabrication of multilayer ultrathin composite films composed of nanosized titanium dioxide particles (P25, Degussa) and polyelectrolytes (PELs), such as poly(allyl amine hydrochloride) (PAH) and poly(styrene sulfonate sodium salt) (PSS), on glass substrates using the layer-by-layer (LbL) assembly technique and its potentia application for the photodegradation of rhodamine B under ultraviolet (UV) irradiation has been reported. The polyelectrolytes and TiO2 were deposited on glass substrates at pH 2.5 and the growth of the multilayers was studied using UV/vis speccrophotometer. Thicknes measurements of the films showed a linear increase in film thickness with increase in number of bilayers. The surface microstructure of the thin films was characterized by field emission scanning electron microscope. The ability of the catalysts immobilized by this technique was compared with TiO2 films prepared by drop casting and spin coating methods. Comparison has been made in terms of film stability and photodegradation of rhodamine B. Process variables such as the effect of surface area of the multilayers, umber of bilayers, and initial dye concentration on photodegradation of rhodamine B were studied. Degradation efficiency increased with increase in number of catalysts (total surface area) and bilayers. Kinetics analysis indicated that the photodegradation rates follow first order kinetics. Under maximum loading of TiO2, with five catalyst slides having 20 bilayers of polyelectrolyte/TiO2 on each, 100 mL of 10 mg/L dye solution could be degraded completely in 4 h. The same slides could be reused with the same efficiency for several cycles. This study demonstrates that nanoparticles can be used in wastewater treatment using a simple immobilization technique. This makes the process an attractive option for scale up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fabrication of single-component multilayer thin films still remains a challenging task via the layer-by-layer (LbL) approach. In this communication, we report the self-assembly of single-component multilayer thin films on flat and colloidal substrates through glutaraldehyde mediated covalent bonding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffusion in a composite slab consisting of a large number of layers provides an ideal prototype problem for developing and analysing two-scale modelling approaches for heterogeneous media. Numerous analytical techniques have been proposed for solving the transient diffusion equation in a one-dimensional composite slab consisting of an arbitrary number of layers. Most of these approaches, however, require the solution of a complex transcendental equation arising from a matrix determinant for the eigenvalues that is difficult to solve numerically for a large number of layers. To overcome this issue, in this paper, we present a semi-analytical method based on the Laplace transform and an orthogonal eigenfunction expansion. The proposed approach uses eigenvalues local to each layer that can be obtained either explicitly, or by solving simple transcendental equations. The semi-analytical solution is applicable to both perfect and imperfect contact at the interfaces between adjacent layers and either Dirichlet, Neumann or Robin boundary conditions at the ends of the slab. The solution approach is verified for several test cases and is shown to work well for a large number of layers. The work is concluded with an application to macroscopic modelling where the solution of a fine-scale multilayered medium consisting of two hundred layers is compared against an “up-scaled” variant of the same problem involving only ten layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films are the basis of much of recent technological advance, ranging from coatings with mechanical or optical benefits to platforms for nanoscale electronics. In the latter, semiconductors have been the norm ever since silicon became the main construction material for a multitude of electronical components. The array of characteristics of silicon-based systems can be widened by manipulating the structure of the thin films at the nanoscale - for instance, by making them porous. The different characteristics of different films can then to some extent be combined by simple superposition. Thin films can be manufactured using many different methods. One emerging field is cluster beam deposition, where aggregates of hundreds or thousands of atoms are deposited one by one to form a layer, the characteristics of which depend on the parameters of deposition. One critical parameter is deposition energy, which dictates how porous, if at all, the layer becomes. Other parameters, such as sputtering rate and aggregation conditions, have an effect on the size and consistency of the individual clusters. Understanding nanoscale processes, which cannot be observed experimentally, is fundamental to optimizing experimental techniques and inventing new possibilities for advances at this scale. Atomistic computer simulations offer a window to the world of nanometers and nanoseconds in a way unparalleled by the most accurate of microscopes. Transmission electron microscope image simulations can then bridge this gap by providing a tangible link between the simulated and the experimental. In this thesis, the entire process of cluster beam deposition is explored using molecular dynamics and image simulations. The process begins with the formation of the clusters, which is investigated for Si/Ge in an Ar atmosphere. The structure of the clusters is optimized to bring it as close to the experimental ideal as possible. Then, clusters are deposited, one by one, onto a substrate, until a sufficiently thick layer has been produced. Finally, the concept is expanded by further deposition with different parameters, resulting in multiple superimposed layers of different porosities. This work demonstrates how the aggregation of clusters is not entirely understood within the scope of the approximations used in the simulations; yet, it is also shown how the continued deposition of clusters with a varying deposition energy can lead to a novel kind of nanostructured thin film: a multielemental porous multilayer. According to theory, these new structures have characteristics that can be tailored for a variety of applications, with precision heretofore unseen in conventional multilayer manufacture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinetics of random sequential, irreversible multilayer deposition of macromolecules of two different sizes on a one dimensional infinite lattice is analyzed at the mean field level. A formal solution for the corresponding rate equation is obtained. The Jamming limits and the distribution of gaps of exact sizes are discussed. In the absence of screening, the jamming limits are shown to be the same for all the layers. A detailed analysis for the components differing by one monomer unit is presented. The small and large time behaviors and the dependence of the individual jamming limits of the k mers and (k−1) mers on k and the rate parameters are analyzed.