126 resultados para MRA
Resumo:
Resumen basado en el de la publicación
Resumo:
BACKGROUND: Systematic need for angiography in diagnosis of carotid artery stenosis and indication of surgical therapy is still debated. Noninvasive imaging techniques such as MR angiography (MRA) or CT angiography (CTA) offer an alternative to digital subtraction angiography (DSA) and are increasingly used in clinical practice. In this study, we present the radiological characteristics and clinical results of a series of patients operated on the basis of combined ultrasonography (US)/MRA. METHODS: This observational study included all the patients consecutively operated for a carotid stenosis in our Department from October 1998 to December 2004. The applied MRA protocol had previously been established in a large correlation study with DSA. DSA was used only in case of discordance between US and MRA. The preoperative radiological information furnished by MRA was compared with intraoperative findings. The outcome of the operation was assessed according to ECST criteria. RESULTS: Among 327 patients, preoperative MRA was performed in 278 (85%), DSA in 44 (13.5%) and CT angiography in 5 (1.5%). Most of DSA studies were performed as emergency for preparation of endovascular therapy or for reasons other than carotid stenosis. Eleven additional DSA (3.3%) complemented US/MRA, mostly because diverging diagnosis of subocclusion of ICA. No direct morbidity or intraoperative difficulty was related to preoperative MRA. Combined mortality/major morbidity rate was 0.9% (3 patients) and minor morbidity rate 5.5% (18 patients). CONCLUSIONS: This observational study describes a well-established practice of carotid surgery and supports the exclusive use of non invasive diagnostic imaging for indicating and deciding the operation.
Resumo:
OBJECTIVES: To determine the accuracy of automated vessel-segmentation software for vessel-diameter measurements based on three-dimensional contrast-enhanced magnetic resonance angiography (3D-MRA). METHOD: In 10 patients with high-grade carotid stenosis, automated measurements of both carotid arteries were obtained with 3D-MRA by two independent investigators and compared with manual measurements obtained by digital subtraction angiography (DSA) and 2D maximum-intensity projection (2D-MIP) based on MRA and duplex ultrasonography (US). In 42 patients undergoing carotid endarterectomy (CEA), intraoperative measurements (IOP) were compared with postoperative 3D-MRA and US. RESULTS: Mean interoperator variability was 8% for measurements by DSA and 11% by 2D-MIP, but there was no interoperator variability with the automated 3D-MRA analysis. Good correlations were found between DSA (standard of reference), manual 2D-MIP (rP=0.6) and automated 3D-MRA (rP=0.8). Excellent correlations were found between IOP, 3D-MRA (rP=0.93) and US (rP=0.83). CONCLUSION: Automated 3D-MRA-based vessel segmentation and quantification result in accurate measurements of extracerebral-vessel dimensions.
Resumo:
INTRODUCTION Native-MR angiography (N-MRA) is considered an imaging alternative to contrast enhanced MR angiography (CE-MRA) for patients with renal insufficiency. Lower intraluminal contrast in N-MRA often leads to failure of the segmentation process in commercial algorithms. This study introduces an in-house 3D model-based segmentation approach used to compare both sequences by automatic 3D lumen segmentation, allowing for evaluation of differences of aortic lumen diameters as well as differences in length comparing both acquisition techniques at every possible location. METHODS AND MATERIALS Sixteen healthy volunteers underwent 1.5-T-MR Angiography (MRA). For each volunteer, two different MR sequences were performed, CE-MRA: gradient echo Turbo FLASH sequence and N-MRA: respiratory-and-cardiac-gated, T2-weighted 3D SSFP. Datasets were segmented using a 3D model-based ellipse-fitting approach with a single seed point placed manually above the celiac trunk. The segmented volumes were manually cropped from left subclavian artery to celiac trunk to avoid error due to side branches. Diameters, volumes and centerline length were computed for intraindividual comparison. For statistical analysis the Wilcoxon-Signed-Ranked-Test was used. RESULTS Average centerline length obtained based on N-MRA was 239.0±23.4 mm compared to 238.6±23.5 mm for CE-MRA without significant difference (P=0.877). Average maximum diameter obtained based on N-MRA was 25.7±3.3 mm compared to 24.1±3.2 mm for CE-MRA (P<0.001). In agreement with the difference in diameters, volumes obtained based on N-MRA (100.1±35.4 cm(3)) were consistently and significantly larger compared to CE-MRA (89.2±30.0 cm(3)) (P<0.001). CONCLUSIONS 3D morphometry shows highly similar centerline lengths for N-MRA and CE-MRA, but systematically higher diameters and volumes for N-MRA.
Resumo:
OBJECTIVE Intraarticular gadolinium-enhanced magnetic resonance arthrography (MRA) is commonly applied to characterize morphological disorders of the hip. However, the reproducibility of retrieving anatomic landmarks on MRA scans and their correlation with intraarticular pathologies is unknown. A precise mapping system for the exact localization of hip pathomorphologies with radial MRA sequences is lacking. Therefore, the purpose of the study was the establishment and validation of a reproducible mapping system for radial sequences of hip MRA. MATERIALS AND METHODS Sixty-nine consecutive intraarticular gadolinium-enhanced hip MRAs were evaluated. Radial sequencing consisted of 14 cuts orientated along the axis of the femoral neck. Three orthopedic surgeons read the radial sequences independently. Each MRI was read twice with a minimum interval of 7 days from the first reading. The intra- and inter-observer reliability of the mapping procedure was determined. RESULTS A clockwise system for hip MRA was established. The teardrop figure served to determine the 6 o'clock position of the acetabulum; the center of the greater trochanter served to determine the 12 o'clock position of the femoral head-neck junction. The intra- and inter-observer ICCs to retrieve the correct 6/12 o'clock positions were 0.906-0.996 and 0.978-0.988, respectively. CONCLUSIONS The established mapping system for radial sequences of hip joint MRA is reproducible and easy to perform.
Resumo:
In recent years, unmanned aerial vehicles (UAVs) have been widely used in combat, and their potential applications in civil and commercial roles are also receiving considerable attention by industry and the research community. There are numerous published reports of UAVs used in Earth science missions [1], fire-fighting [2], and border security [3] trials, with other speculative deployments, including applications in agriculture, communications, and traffic monitoring. However, none of these UAVs can demonstrate an equivalent level of safety to manned aircraft, particularly in the case of an engine failure, which would require an emergency or forced landing. This may be arguably the main factor that has prevented these UAV trials from becoming full-scale commercial operations, as well as restricted operations of civilian UAVs to only within segregated airspace.
Resumo:
The paper discusses robot navigation from biological inspiration. The authors sought to build a model of the rodent brain that is suitable for practical robot navigation. The core model, dubbed RatSLAM, has been demonstrated to have exactly the same advantages described earlier: it can build, maintain, and use maps simultaneously over extended periods of time and can construct maps of large and complex areas from very weak geometric information. The work contrasts with other efforts to embody models of rat brains in robots. The article describes the key elements of the known biology of the rat brain in relation to navigation and how the RatSLAM model captures the ideas from biology in a fashion suitable for implementation on a robotic platform. The paper then outline RatSLAM's performance in two difficult robot navigation challenges, demonstrating how a cognitive robotics approach to navigation can produce results that rival other state of the art approaches in robotics.
Resumo:
Draglines are massive machines commonly used in surface mining to strip overburden, revealing the targeted minerals for extraction. Automating some or all of the phases of operation of these machines offers the potential for significant productivity and maintenance benefits. The mining industry has a history of slow uptake of automation systems due to the challenges contained in the harsh, complex, three-dimensional (3D), dynamically changing mine operating environment. Robotics as a discipline is finally starting to gain acceptance as a technology with the potential to assist mining operations. This article examines the evolution of robotic technologies applied to draglines in the form of machine embedded intelligent systems. Results from this work include a production trial in which 250,000 tons of material was moved autonomously, experiments demonstrating steps towards full autonomy, and teleexcavation experiments in which a dragline in Australia was tasked by an operator in the United States.
Resumo:
The article described an open-source toolbox for machine vision called Machine Vision Toolbox (MVT). MVT includes more than 60 functions including image file reading and writing, acquisition, display, filtering, blob, point and line feature extraction, mathematical morphology, homographies, visual Jacobians, camera calibration, and color space conversion. MVT can be used for research into machine vision but is also versatile enough to be usable for real-time work and even control. MVT, combined with MATLAB and a model workstation computer, is a useful and convenient environment for the investigation of machine vision algorithms. The article illustrated the use of a subset of toolbox functions for some typical problems and described MVT operations including the simulation of a complete image-based visual servo system.
Resumo:
The psychological contract is a key analytical device utilised by both academics and practitioners to conceptualise and explore the dynamics of the employment relationship. However, despite the recognised import of the construct, some authors suggest that its empirical investigation has fallen into a 'methodological rut' [Conway & Briner, 2005, p. 89] and is neglecting to assess key tenets of the concept, such as its temporal and dynamic nature. This paper describes the research design of a longitudinal, mixed methods study which draws upon the strengths of both qualitative and quantitative modes of inquiry in order to explore the development of, and changes in, the psychological contract. Underpinned by a critical realist philosophy, the paper seeks to offer a research design suitable for exploring the process of change not only within the psychological contract domain, but also for similar constructs in the human resource management and broader organisational behaviour fields.
Resumo:
Over the last few decades, construction project performance has been evaluated due to the increase of delays, cost overruns and quality failures. Growing numbers of disputes, inharmonious working environments, conflict, blame cultures, and mismatches of objectives among project teams have been found to be contributory factors to poor project performance. Performance measurement (PM) approaches have been developed to overcome these issues, however, the comprehensiveness of PM as an overall approach is still criticised in terms of the iron triangle; namely time, cost, and quality. PM has primarily focused on objective measures, however, continuous improvement requires the inclusion of subjective measures, particularly contractor satisfaction (Co-S). It is challenging to deal with the two different groups of large and small-medium contractor satisfaction as to date, Co-S has not been extensively defined, primarily in developing countries such as Malaysia. Therefore, a Co-S model is developed in this research which aims to fulfil the current needs in the construction industry by integrating performance measures to address large and small-medium contractor perceptions. The positivist paradigm used in the research was adhered to by reviewing relevant literature and evaluating expert discussions on the research topic. It yielded a basis for the contractor satisfaction model (CoSMo) development which consists of three elements: contractor satisfaction (Co-S) dimensions; contributory factors and characteristics (project and participant). Using valid questionnaire results from 136 contractors in Malaysia lead to the prediction of several key factors of contractor satisfaction and to an examination of the relationships between elements. The relationships were examined through a series of sequential statistical analyses, namely correlation, one-way analysis of variance (ANOVA), t-tests and multiple regression analysis (MRA). Forward and backward MRAs were used to develop Co-S mathematical models. Sixteen Co-S models were developed for both large and small-medium contractors. These determined that the large contractor Malaysian Co-S was most affected by the conciseness of project scope and quality of the project brief. Contrastingly, Co-S for small-medium contractors was strongly affected by the efficiency of risk control in a project. The results of the research provide empirical evidence in support of the notion that appropriate communication systems in projects negatively contributes to large Co-S with respect to cost and profitability. The uniqueness of several Co-S predictors was also identified through a series of analyses on small-medium contractors. These contractors appear to be less satisfied than large contractors when participants lack effectiveness in timely authoritative decision-making and communication between project team members. Interestingly, the empirical results show that effective project health and safety measures are influencing factors in satisfying both large and small-medium contractors. The perspectives of large and small-medium contractors in respect to the performance of the entire project development were derived from the Co-S models. These were statistically validated and refined before a new Co-S model was developed. Developing such a unique model has the potential to increase project value and benefit all project participants. It is important to improve participant collaboration as it leads to better project performance. This study may encourage key project participants; such as client, consultant, subcontractor and supplier; to increase their attention to contractor needs in the development of a project. Recommendations for future research include investigating other participants‟ perspectives on CoSMo and the impact of the implementation of CoSMo in a project, since this study is focused purely on the contractor perspective.
Resumo:
Robotic systems are increasingly being utilised as fundamental data-gathering tools by scientists, allowing new perspectives and a greater understanding of the planet and its environmental processes. Today's robots are already exploring our deep oceans, tracking harmful algal blooms and pollution spread, monitoring climate variables, and even studying remote volcanoes. This article collates and discusses the significant advancements and applications of marine, terrestrial, and airborne robotic systems developed for environmental monitoring during the last two decades. Emerging research trends for achieving large-scale environmental monitoring are also reviewed, including cooperative robotic teams, robot and wireless sensor network (WSN) interaction, adaptive sampling and model-aided path planning. These trends offer efficient and precise measurement of environmental processes at unprecedented scales that will push the frontiers of robotic and natural sciences.
Resumo:
This paper discusses a method to quantify robust autonomy of Uninhabited Vehicles and Systems (UVS) in aerospace, marine, or land applications. Based on mission-vehicle specific performance criteria, we define an system utility function that can be evaluated using simulation scenarios for an envelope of environmental conditions. The results of these evaluations are used to compute a figure of merit or measure for operational efectiveness (MOE). The procedure is then augmented to consider faults and the performance of mechanisms to handle these faulty operational modes. This leads to a measure of robust autonomy (MRA). The objective of the proposed figures of merit is to assist in decision making about vehicle performance and reliability at both vehicle development stage (using simulation models) and at certification stage (using hardware-in-the-loop testing). Performance indices based on dynamic and geometric tasks associated with vehicle manoeuvring problems are proposed, and an example of a two- dimensional y scenario is provided to illustrate the use of the proposed figures of merit.