978 resultados para MORPHOLOGY EVOLUTION
Resumo:
Tese de Doutoramento em Engenharia Biomédica.
Resumo:
We study the surface morphology evolution of ZnO thin films grown on glass substrates as a function of thickness by RF magnetron sputtering technique. The surface topography of the samples is measured by atomic force microscopy (AFM). All AFM images of the films are analyzed using scaling concepts. The results show that the surface morphology is initially formed by a small grains structure. The grains increase in size and height with growth time resulting in the formation of a mounds-like structure. The growth exponent, beta, and the exponent defining the evolution of the characteristic wavelength of the surface, p, amounted to beta = 0.76 +/- 0.08 and p = 0.3 +/- 0.05. From these exponents, the surface morphology is determined by the nonlocal shadowing effects, that is the dominant mechanism, due to the incident deposition particles during film growth.
Resumo:
Background: Polypodium hydriforme is a parasite with an unusual life cycle and peculiar morphology, both of which have made its systematic position uncertain. Polypodium has traditionally been considered a cnidarian because it possesses nematocysts, the stinging structures characteristic of this phylum. However, recent molecular phylogenetic studies using 18S rDNA sequence data have challenged this interpretation, and have shown that Polypodium is a close relative to myxozoans and together they share a closer affinity to bilaterians than cnidarians. Due to the variable rates of 18S rDNA sequences, these results have been suggested to be an artifact of long-branch attraction ( LBA). A recent study, using multiple protein coding markers, shows that the myxozoan Buddenbrockia, is nested within cnidarians. Polypodium was not included in this study. To further investigate the phylogenetic placement of Polypodium, we have performed phylogenetic analyses of metazoans with 18S and partial 28S rDNA sequences in a large dataset that includes Polypodium and a comprehensive sampling of cnidarian taxa. Results: Analyses of a combined dataset of 18S and partial 28S sequences, and partial 28S alone, support the placement of Polypodium within Cnidaria. Removal of the long-branched myxozoans from the 18S dataset also results in Polypodium being nested within Cnidaria. These results suggest that previous reports showing that Polypodium and Myxozoa form a sister group to Bilateria were an artifact of long-branch attraction. Conclusion: By including 28S rDNA sequences and a comprehensive sampling of cnidarian taxa, we demonstrate that previously conflicting hypotheses concerning the phylogenetic placement of Polypodium can be reconciled. Specifically, the data presented provide evidence that Polypodium is indeed a cnidarian and is either the sister taxon to Hydrozoa, or part of the hydrozoan clade, Leptothecata. The former hypothesis is consistent with the traditional view that Polypodium should be placed in its own cnidarian class, Polypodiozoa.
Resumo:
We obtained new Fabry-Perot data cubes and derived velocity fields, monochromatic, and velocity dispersion maps for 28 galaxies in the Hickson compact groups 37, 40, 47, 49, 54, 56, 68, 79, and 93. We also derived rotation curves for 9 of the studied galaxies, 6 of which are strongly asymmetric. Combining these new data with previously published 2D kinematic maps of compact group galaxies, we investigated the differences between the kinematic and morphological position angles for a sample of 46 galaxies. We find that one third of the unbarred compact group galaxies have position angle misalignments between the stellar and gaseous components. This and the asymmetric rotation curves are clear signatures of kinematic perturbations, probably because of interactions among compact group galaxies. A comparison between the B-band Tully-Fisher relation for compact group galaxies and for the GHASP field-galaxy sample shows that, despite the high fraction of compact group galaxies with asymmetric rotation curves, these lay on the TF relation defined by galaxies in less dense environments, although with more scatter. This agrees with previous results, but now confirmed for a larger sample of 41 galaxies. We confirm the tendency for compact group galaxies at the low-mass end of the Tully-Fisher relation (HCG 49b, 89d, 96c, 96d, and 100c) to have either a magnitude that is too bright for its mass (suggesting brightening by star formation) and/or a low maximum rotational velocity for its luminosity (suggesting tidal stripping). These galaxies are outside the Tully Fisher relation at the 1 sigma level, even when the minimum acceptable values of inclinations are used to compute their maximum velocities. Including such galaxies with nu < 100 km s(-1) in the determination of the zero point and slope of the compact group B-band Tully-Fisher relation would strongly change the fit, making it different from the relation for field galaxies, which has to be kept in mind when studying scaling relations of interacting galaxies, especially at high redshifts.
Resumo:
Wild-caught larvae, attributed to the lobster shrimp Arius serratus, consisting of two zoeal stages and a decapodid (megalopa), are described in detail. Parentage of larvae was ascertained based on geographic distribution of axiideans and gebiideans (= former thalassinideans) within the study area and close morphological resemblance to other congeneric larval stages. Larvae of A. serratus represent the first described 'thalassinidean' larvae from Canadian Atlantic waters and the first for Axiidae within the northwest Atlantic. Among axiidean larvae, those of A. serratus most closely resemble larvae of A. stirhynchus from the eastern Atlantic. Distinct features include the spination of the pleon that set A. serratus zoeae apart from those of most other 'thalassinideans' but that, in combination with a telson very similar to Homarus americanus, contributes to the general resemblance of A. serratus larvae to those of the American lobster. The primary distinction between these taxa is the presence of a chela on the third pereiopod in the latter that is not present in the former. In view of these appendages being prone to loss or damage, other characters that separate these taxa are listed and discussed. Given the uncertain status of some taxa within Axiidae and limited detailed information of larvae with certain parentage, difficulties in delineating the family based on larvae persist, as they do for cladistic analyses using adult morphology and molecular approaches.
Resumo:
In this work, the stress relaxation behavior of PMMA/PS blends, with or without random copolymer addition, submitted to step shear strain experiments in the linear and nonlinear regime was studied. The effect of blend composition (ranging from 10 to 30 wt.% of dispersed phase), viscosity ratio (ranging from 0.1 to 7.5), and random copolymer addition (for concentrations up to 8 wt.% with respect to the dispersed phase) was evaluated and correlated to the evolution of the morphology of the blends. All blends presented three relaxation stages: a first fast relaxation which was attributed to the relaxation of the pure phases, a second one which was characterized by the presence of a plateau, and a third fast one. The relaxation was shown to be faster for less extended and smaller droplets and to be influenced by coalescence for blends with a dispersed phase concentration larger than 20 wt.%. The relaxation of the blend was strongly influenced by the matrix viscosity. The addition of random copolymer resulted in a slower relaxation of the droplets.
Resumo:
INTRODUCTION: Authors describe human schistosomal granuloma in late chronic phase, from the morphological and evolutionary viewpoints. METHODS: The study was based on a histological analysis of two fragments obtained from a surgical biopsy of peritoneum and large intestine of a 42-year-old patient, with a pseudotumoral form mimicking a peritoneal carcinomatosis associated to the schistosomiasis hepatointestinal form. RESULTS: Two hundred and three granulomas were identified in the pseudotumor and 27 in the intestinal biopsy, with similar morphological features, most in the late chronic phase, in fibrotic healing. A new structural classification was suggested for granulomas: zone 1 (internal), 2 (intermediate) and 3 (external). CONCLUSIONS: Regarding granuloma as a whole, we may conclude that fibrosis is likely to be controlled by different and independent mechanisms in the three zones of the granuloma. Lamellar fibrosis in zone 3 seems to be controlled by matrix mesenchymal cells (fibroblasts and myoepithelial cells) and by inflammatory exudate cells (lymphocytes, plasmocytes, neutrophils, eosinophils). Annular fibrosis in zone 2, comprising a dense fibrous connective tissue, with few cells in the advanced phase, would be controlled by epithelioid cells involving zone 1 in recent granulomas. In zone 1, replacing periovular necrosis, an initialy loose and tracery connective neoformation, housing stellate cells or with fusiform nuclei, a dense paucicellular nodular connctive tissue emerges, probably induced by fibroblasts. In several granulomas, one of the zones is missing and granuloma is represented by two of them: Z3 and Z2, Z3 and Z1 or Z2 and Z1 and, ultimately, by a scar.
Resumo:
Initial topography and inherited structural discontinuities are known to play a dominant role in rock slope stability. Previous 2-D physical modeling results demonstrated that even if few preexisting fractures are activated/propagated during gravitational failure all of those heterogeneities had a great influence on mobilized volume and its kinematics. The question we address in the present study is to determine if such a result is also observed in 3-D. As in 2-D previous models we examine geologically stable model configuration, based upon the well documented landslide at Randa, Switzerland. The 3-D models consisted of a homogeneous material in which several fracture zones were introduced in order to study simplified but realistic configurations of discontinuities (e.g. based on natural example rather than a parametric study). Results showed that the type of gravitational failure (deep-seated landslide or sequential failure) and resulting slope morphology evolution are the result of the interplay of initial topography and inherited preexisting fractures (orientation and density). The three main results are i) the initial topography exerts a strong control on gravitational slope failure. Indeed in each tested configuration (even in the isotropic one without fractures) the model is affected by a rock slide, ii) the number of simulated fracture sets greatly influences the volume mobilized and its kinematics, and iii) the failure zone involved in the 1991 event is smaller than the results produced by the analog modeling. This failure may indicate that the zone mobilized in 1991 is potentially only a part of a larger deep-seated landslide and/or wider deep seated gravitational slope deformation.
Resumo:
Bien que ce soit un procédé industriel répandu, les films de copolymères à blocs préparés par trempage (« dip-coating ») sont moins étudiés que ceux obtenus par tournette (« spin-coating »). Pourtant, il est possible grâce à cette technique de contrôler précisément les caractéristiques de ces films. Au-delà de la méthode de fabrication, la capacité de modifier la morphologie des films trempés à l’aide d’autres facteurs externes est un enjeu primordial pour leur utilisation dans les nanotechnologies. Nous avons choisi, ici, d’étudier l’influence d’une petite molécule sur la morphologie de films supramoléculaires réalisés par « dip-coating » à partir de solutions de poly(styrène-b-4-vinyl pyridine) (PS-P4VP) dans le tétrahydrofurane (THF). En présence de 1-naphtol (NOH) et d’1-acide napthoïque (NCOOH), qui se complexent par pont hydrogène au bloc P4VP, ces films donnent, respectivement, une morphologie en nodules (sphères) et en stries (cylindres horizontaux). Des études par spectroscopie infrarouge ont permis de mesurer la quantité de petite molécule dans ces films minces, qui varie avec la vitesse de retrait mais qui s’avère être identique pour les deux petites molécules, à une vitesse de retrait donnée. Cependant, des études thermiques ont montré qu’une faible fraction de petite molécule est dispersée dans le PS (davantage de NOH que de NCOOH à cause de la plus faible liaison hydrogène du premier). La vitesse de retrait est un paramètre clé permettant de contrôler à la fois l’épaisseur et la composition du film supramoléculaire. L’évolution de l’épaisseur peut être modélisée par deux régimes récemment découverts. Aux faibles vitesses, l’épaisseur décroît (régime de capillarité), atteint un minimum, puis augmente aux vitesses plus élevées (régime de drainage). La quantité de petite molécule augmente aux faibles vitesses pour atteindre un plateau correspondant à la composition de la solution aux vitesses les plus élevées. Des changements de morphologie, à la fois liés à l’épaisseur et à la quantité de petite molécule, sont alors observés lorsque la vitesse de retrait est modifiée. Le choix du solvant est aussi primordial dans le procédé de « dip-coating » et a été étudié en utilisant le chloroforme, qui est un bon solvant pour les deux blocs. Il s’avère qu’à la fois la composition ainsi que la morphologie des films de PS-P4VP complexés sont différentes par rapport aux expériences réalisées dans le THF. Premièrement, la quantité de petite molécule reste constante avec la vitesse de retrait mais les films sont plus riches en NCOOH qu’en NOH. Deuxièmement, la morphologie des films contenant du NOH présente des stries ainsi que des lamelles à plat, tandis que seules ces dernières sont observables pour le NCOOH. Ce comportement est essentiellement dû à la quantité différente de petite molécule modulée par leur force de complexation différente avec le P4VP dans le chloroforme. Enfin, ces films ont été utilisés pour l’adsorption contrôlée de nanoparticules d’or afin de guider leur organisation sur des surfaces recouvertes de PS-P4VP. Avant de servir comme gabarits, un recuit en vapeurs de solvant permet soit d’améliorer l’ordre à longue distance des nodules de P4VP, soit de modifier la morphologie des films selon le solvant utilisé (THF ou chloroforme). Ils peuvent être ensuite exposés à une solution de nanoparticules d’or de 15 nm de diamètre qui permet leur adsorption sélective sur les nodules (ou stries) de P4VP.
Resumo:
Phacellophora camtschatica has long been assigned to the semaeostome scyphozoan family Ulmaridae. Early stages (scyphistomae, strobilae, ephyrae, postephyrae, and young medusae) of the species were compared with those of several other semaeostomes currently assigned to Ulmaridae, Pelagiidae, and Cyaneidae. Juveniles of P. camtschatica did not strictly conform with characters of those of any of these families, and appeared intermediate between Cyaneidae and Ulmaridae. A new family, Phacellophoridae, is proposed to accommodate P. camtschatica.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Colloidal suspensions of tin oxide nanocrystals were synthesized at room temperature by the hydrolysis reaction of tin chloride (II), in an ethanolic solution. The coarsening kinetics of such nanocrystals was studied by submitting the as-prepared suspensions to hydrothermal treatments at temperatures of 100, 150 and 200 degrees C for periods between 60 and 12,000 min. Transmission electron microscopy (TEM) was used to characterize the samples (i.e. distribution of nanocrystal size, average particle radius and morphology). The results show that the usual Ostwald ripening coarsening mechanism does not fit well the experimental data, which is an indicative that this process is not significant for SnO2 nanocrystals, in the studied experimental conditions. The morphology evolution of the nanocrystals upon hydrothermal treatment indicates that growth by oriented attachment (OA) should be significant. A kinetic model that describes OA growth is successfully applied to fit the data. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Polycrystalline BaWO4 and PbWO4 thin films having a tetragonal scheelite structure were prepared at different temperatures. Soluble precursors such as barium carbonate, lead acetate trihydrate and tungstic acid, as starting materials, were mixed in aqueous solution. The thin films were deposited on silicon, platinum-coated silicon and quartz substrates by means of the spinning technique. The surface morphology and crystal structure of the thin films were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, and specular reflectance infrared Fourier transform spectroscopy, respectively. Nucleation stages and surface morphology evolution of thin films on silicon substrates have been studied by atomic force microscopy. XRD characterization of these films showed that BaWO4 and PbWO4 phase crystallize at 500 degreesC from an inorganic amorphous phase. FTIR spectra revealed the complete decomposition of the organic ligands at 500 degreesC and the appearance of two sharp and intense bands between 1000 and 600 cm(-1) assigned to vibrations of the antisymmetric stretches resulting from the high crystallinity of both thin films. The optical properties were also studied. It was found that BaWO4 and PbWO4 thin films have Eg = 5.78 eV and 4.20 eV, respectively, of a direct transition nature. The excellent microstructural quality and chemical homogeneity results confirmed that soft solution processing provides an inexpensive and environmentally friendly route for the preparation of BaWO4 and PbWO4 thin films. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Stoichiometric CaWO4 and SrWO4 thin films were synthesized using a chemical solution processing, the so-called polymeric precursor method. In this soft chemical method, soluble precursors such as strontium carbonate, calcium carbonate and tungstic acid, as starting materials, were mixed in an aqueous solution. The thin films were deposited on glass substrates by means of the spinning technique. The surface morphology and crystal structure of the thin films were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Nucleation stages and surface morphology evolution of the thin films on glass substrates were studied by atomic force microscopy. The films nucleate at 300 degreesC, after the coalescence of small nuclei into larger grains yielding a homogeneous dense surface. XRD characterization of these films showed that the CaWO4 and SrWO4 phases crystallize at 400 degreesC from an inorganic amorphous phase. No intermediate crystalline phase was identified. The optical properties were also studied. It was found that CaWO4 and SrWO4 thin films have an optical band gap, E-gap=5.27 and 5.78 eV, respectively, of a direct transition nature. The excellent microstructural quality and chemical homogeneity confirmed that this soft solution processing provides an inexpensive and environmentally friendly route for the preparation of CaWO4 and SrWO4 thin films. (C) 2003 Elsevier B.V. All rights reserved.