939 resultados para MICROCYSTIS AERUGINOSA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As cianobactérias Microcystis aeruginosa e Planktothrix agardhii são espécies formadoras de florações comuns em ecossistemas aquáticos eutrofizados. Nestes ambientes, a disponibilidade de luz é um dos fatores determinantes para o desenvolvimento e estruturação da comunidade fitoplanctônica. O presente estudo teve como objetivo investigar o efeito da luz na fisiologia de cepas de cianobactérias (M. aeruginosa e P. agardhii), avaliando o crescimento, a variabilidade inter e intra-específica e a competição por luz. Para tanto foram realizados cultivos estanques em diferentes intensidades luminosas (10, 40, 60, 100 e 500 mol m-2 s-1) e calculadas as taxas de crescimento e os rendimentos máximos das culturas. O requerimento mínimo de luz de cada cepa foi determinado em experimentos com monoculturas em sistemas de cultivo contínuo (quimiostatos) sob condições de limitação de luz. A competição por luz foi avaliada através de experimentos com biculturas em quimiostatos. Foi observada variabilidade intra e inter-específica das cepas, nas diferentes intensidades luminosas testadas. Em 500 μmol m-2 s-1, as cepas de M. aeruginosa obtiveram maior biomassa do que P. agardhii, corroborando a maior sensibilidade de P. agardhii luz. Embora com rendimento máximo menor, P. agardhii cresceu em intensidades luminosas consideradas elevadas para a espécie, 100 e 500 μmol m-2 s-1. Estes resultados evidenciam a capacidade de P. agardhii ocorrer em ambientes com grandes amplitudes de luminosidade. Na intensidade de 10 μmol m-2 s-1, M. aeruginosa e P. agardhii apresentaram crescimento semelhante, demonstrando a habilidade das duas espécies em crescer com pouca luz. Nas monoculturas em quimiostato, sob condições de limitação de luz, as cepas de M. aeruginosa atingiram maior biomassa durante o equilíbrio (steady-state) do que P. agadhii, refletindo uma capacidade suporte mais elevada, enquanto que os valores de requerimento mínimo de luz foram semelhantes entre as duas espécies. Ao competirem, M. aeruginosa superou P. agardhii imediatamente após o início do experimento. Esse rápido crescimento resultou na dominância de M. aeruginosa em todos os pares de cepas testados e, em dois casos, ocorreu exclusão competitiva de P. agardhii. Quando não ocorreu exclusão, P. agardhii conseguiu manter-se no sistema com uma baixa biomassa (ca.15%). Estes resultados ajudam a entender a co-ocorrência destas espécies no ambiente e a dominância de M. aeruginosa mesmo em condições de baixa luminosidade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whole transcriptome shotgun sequencing (RNA-seq) was used to assess the transcriptomic response of the toxic cyanobacterium Microcystis aeruginosa during growth with low levels of dissolved inorganic nitrogen (low N), low levels of dissolved inorganic phosphorus (low P), and in the presence of high levels of high molecular weight dissolved organic matter (HMWDOM). Under low N, one third of the genome was differentially expressed, with significant increases in transcripts observed among genes within the nir operon, urea transport genes (urtBCDE), and amino acid transporters while significant decreases in transcripts were observed in genes related to photosynthesis. There was also a significant decrease in the transcription of the microcystin synthetase gene set under low N and a significant decrease in microcystin content per Microcystis cell demonstrating that N supply influences cellular toxicity. Under low P, 27% of the genome was differentially expressed. The Pho regulon was induced leading to large increases in transcript levels of the alkaline phosphatase phoX, the Pst transport system (pstABC), and the sphX gene, and transcripts of multiple sulfate transporter were also significantly more abundant. While the transcriptional response to growth on HMWDOM was smaller (5–22% of genes differentially expressed), transcripts of multiple genes specifically associated with the transport and degradation of organic compounds were significantly more abundant within HMWDOM treatments and thus may be recruited by Microcystis to utilize these substrates. Collectively, these findings provide a comprehensive understanding of the nutritional physiology of this toxic, bloom-forming cyanobacterium and the role of N in controlling microcystin synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

铜绿微囊藻是中国湖泊、水库及其它水域生态系统发生、形成富营养化危害的主要藻类。采用了直接显色法对单细胞铜绿微囊藻(Microcystis aeruginosa)蓄积正磷酸盐的浓度进行测定,并与传统测定方法进行比较。直接显色法测定的磷浓度值减去溶液中可溶性磷浓度值即得到铜绿微囊藻蓄积的磷浓度值。对用不同处理方式处理过的铜绿微囊藻藻液进行过滤显色和直接显色测定,结果表明聚磷酸盐(正磷酸盐)在铜绿微囊藻体内不是游离存在,而很可能是与细胞内某一活性部分结合。在确立测定方法的基础上,研究了以修改了的MⅢ培养基为基本

Relevância:

100.00% 100.00%

Publicador:

Resumo:

研究了单细胞铜绿微囊藻和三种丝状蓝藻(水华束丝藻、水华鱼腥藻及土生席藻)间的相互作用,包括以下两个方面的内容:①铜绿微囊藻细胞滤出液对水华束丝藻、水华鱼腥藻及土生席藻生长的影响;②水华束丝藻、水华鱼腥藻及土生席藻细胞滤出液对铜绿微囊藻生长的影响.研究发现,当滤出液浓度为60%(滤出液与BG11的体积比为3:2)时,制绿微囊藻细胞滤出液对水华束丝藻、水华鱼腥藻的生长有显著促进效果,尤其对水华束丝藻的作用更加明屁;对土生席藻的生长却起着微弱的抑制作用,仅表现于100%细胞滤出液中,对铜绿微囊藻而言,土生席藻细

Relevância:

100.00% 100.00%

Publicador:

Resumo:

以巢湖铜绿微囊藻水华为材料,采用昆明鼠腹腔注射法对其毒性进行了测试,结果表明,有些时期的水华具毒性,其LDmin为60mg干藻/kg鼠重,致毒症状主要是引起实验动物肝脏淤血肿大。该藻毒素呈热稳定性。经分离纯化后,毒素回收率为16.36%,纯度达95.75%,与有毒水华的毒症状相同。毒素在240nm处有一强烈吸收峰。毒素的氨基酸组成为:天冬氨酸、谷氨酸、丙氨酸、亮氨酸和精氨酸。 以铜绿微囊藻毒株7820纯毒素为标准毒素,对该藻有毒水华的毒素进行了定量研究。结果表明,其毒素含量相当于4.45mg7820毒素/

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent study has shown that nonanoic acid (NA) is one of the strongest allelochemicals to a cyanobacterium Microcystis aeruginosa, but the physiological responses of M. aeruginosa to NA stress remain unknown. In this study, physiological characters such as the growth rate, photosynthetic processes, phosphorus and nitrogen uptake kinetics, and the contents of intracellular microcystin of M. aeruginosa PCC7806 were studied under the NA stress. The results showed that the growth rates of M. aeruginosa PCC 7806 were significantly inhibited in all NA stress treatments during first 3 days after exposure, and the growth rate was recovered after 5-day exposure. After 2-day exposure, the contents of both phycocyanin and allophycocyanin per cell decreased at NA concentration of 4 mg L-1, and oxygen evolution was inhibited even at the concentration of 0.5 mg L-1, but carotenoid content per cell was slightly boosted in NA stress. Physiological recovery of M. aeruginosa PCC7806 was observed after 7-day exposure to NA. It was shown that NA stress had no effect on uptake of nitrogen, but could stimulate the uptake of phosphorus. The contents of intracellular microcystin have not been affected in all NA treatments in contrast with the control. (C) 2008 Wiley Periodicals, Inc. Environ Toxicol 24: 610-617, 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physiological differences for three bloom-forming cyanobacteria (Cylindrospermopsis raciborskii, Microcystis aeruginosa, and Aphanizomenon flos-aquae) were investigated. In comparison with M. aeruginosa and A. flos-aquae, C. raciborskii exhibited a significantly higher concentration of carotenoids, higher values in maximum photosynthesis rate (P-m), apparent photosynthetic efficieny (a), and maximum electron transport rate (ETRmax) during the growth period. In addition, higher extracellular alkaline phosphatase activities and lower light compensation point (I-c) were also detected in C raciborskii (p < 0.05, ANOVA). Therefore, it is suggested that the higher photosynthetic activities, more effective uptake and utilization to phosphate, and low light requirements might play important roles in the occurrence and invasive behavior of C. raciborskii. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of bicarbonate (HCO3-) on Microcystis aeruginosa FACHB 905 was assessed in this study. Growth curves, chlorophyll a fluorescence and ultrastructure were measured at two HCO3- concentrations, 2.3 mM and 12.4 mM. A treatment of sodium chloride (NaCl) was also conducted alongside to establish the influence level of sodium. It was found that upon treatment with elevated HCO3- concentrations of 2.3 mM and 12.4 mM, cell densities were 13% and 27% (respectively) higher than controls. In photosynthetic performance, elevated HCO3- concentration initially stimulated Fv/Fm at the prophase of culture and then subsequently inhibited it. The inhibition of 2.3mM was higher than that of 12.4mM HCO3-. The maximum relative electron transport rate (ETRmax) exhibited inhibition at elevated HCO3- concentrations. DI0/CS was decreased at 2.3 mM and increased at 12.4mM. In the case of both treatments. ABS/CSI TR0/CS, ET0/CS, RC/CS0 and RC/CSm were decreased by elevated HCO3- concentrations, which indicated damage to photosynthetic apparati and an inactivation of a fraction of reaction centers. This point was also proven by ultrastructural photos. High HCO3--exposed cells lost the characteristic photosynthetic membrane arrangement compared with the control and high salinity treated samples. At the 2.3mM concentration of HCO3-. damage to photosynthetic apparati caused decreased photosynthetic activity. These findings suggested that elevated HCO3- concentration stimulated the growth and photosynthesis of M. aeruginosa FACHB 905 in a short time. Exposure to high HCO3- concentrations for a longer period of time will damage photosynthetic apparatus. In addition, the ultrastructure indicated that elevated HCO3--concentration lead to photosynthetic apparati damage. In our experiment, it was observed that the inhibition effect of 2.3mM HCO3- was higher than that of 12.4mM HCO3-. We hypothesized that M. aeruginosa FACHB 905 induced a protective mechanism under high concentrations of HCO3-.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyrogallol is a potent allelochemical on Microcystis aeruginosa, but its allelopathic mechanism is not fully known. In order to explore this mechanism, gene expressions for prx, mcyB, psbA, recA, grpE, fabZ under pyrogallol stress were studied, and activities of the main antioxidant enzymes were also measured. The results showed that expression of grpE and recA showed no significant change under pyrogallol stress, while psbA and mcyB were up-regulated at 4 mg L-1. Both prx and fabZ were up-regulated even under exposure to 1 mg L-1 pyrogallol concentration. The activities of superoxide dismutase (SOD) and catalase (CAT) were enhanced under pyrogallol stress. Levels of malodialdehyde (MDA) at 2 and 4 mg L-1 pyrogallol were significantly higher than those of the controls. It was concluded that oxidant damage is an important mechanism for the allelopathic effect of pyrogallol on M. aeruginosa. (c) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To explore the potential grazing effects of mussels on Microcystis aeruginosa, a common bloom-forming phytoplankton, Unio douglasiae and Corbicula fluminea were fed with Scenedesmus obliquus, toxic and non-toxic strains of Microcystis aeruginosa as single food and as mixtures in the laboratory. When fed with single foods, U. douglasiae has similar clearance rates on the three algae populations, while C. fluminea has significantly lower clearance rate on toxic M. aeruginosa than those on the other two algae populations. When fed with mixture foods, both the mussels show significantly higher clearance rates than on single foods. The clearance rates of U. douglasiae on the different food mixtures are not significantly different, and C. fluminea has a significantly lower clearance rate on the toxic food mixtures than that on non-toxic food mixtures. Although the relative lower clearance rates of C. fluminea on toxic food, we may still deduce that both the mussels can exert grazing pressure on phytoplankton. The deduction is supported by the composition of the excretion products. The excretion products (faeces and pseudofaeces) of both mussels contained mainly S. obliquus. In both mixed-food treatments, the ratios of S. obliquus to M. aeruginosa in the excrete products are significantly higher than those in the foods. Therefore, it can be concluded that both mussels prefer M. aeruginosa to S. obliquus, and can cause grazing pressure on M. aeruginosa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to investigate the allelopathic activities between 3 Potamogeton spp. (Potamogeton maackianus, Potamogeton malaianus and Potamogeton pectinatus) and the toxic cyanobacteria (Microcystis aeruginosa). All Potamogeton spp inhibited the growth of M. aeruginosa in both coexistence and exudates experiments. Inhibition of M. aeruginosa growth by plant exudates depended strongly on the biomass of P malaianus. Initial pH (6.5-9.8) did not influence the inhibitory effects of P. malaianus exudates. However, the M. aeruginosa inhibited the net photosynthesis and respiration of all three pondweed test spp.. The decreases in photosynthesis and respiration were probably caused by the toxic compounds released by M. aeruginosa, rather than its shading effects. The M. aeruginosa also decreased the nutrients (phosphorus and nitrogen) uptake rates of macrophytes. The absorption rates of phosphorus and nitrogen and net photosynthesis were decreased sharply. These results will help to restore submerged plants in eutrophic waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In laboratory studies, the allelopathic effects of 3 (Hydrocharitaceae family) submerged macrophytes (Elodea nuttallii (Planch) St. John, Hydrilla verticillata (L.f.) Royle and Vallisneria spiralis L.) were investigated on two strains of Microcystis aeruginosa. Both aqueous methanol extracts and exudates of three macrophytes inhibited the growth of both strains of Microcystis aeruginosa, After 3-days culture, E nuttallii, H. verticillata and V. spiralis excreted 0.8, 0.3 and 1.0% of total phenolic compounds (TPC), respectively, into the surrounding water. After removing phenolic compounds by polyvinylpolypyrrolidone (PVPP)), the plant exudates showed very weak activity. The inhibitory rates of exudates of E. nuttallii, H. verticillata and V. spiralis, against non-toxic M. aeruginosa were decreased by 35.7, 43.4 and 59.1% respectively. Thus 3 submerged macrophytes released the phenolic compounds into the surrounding water, to inhibit the growth of M. aeruginosa. This information may help us in understanding the mechanism of allelopathy in aquatic ecosystems and to control the algal bloom in eutrophic water bodies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arsenic pollution and eutrophication are both prominent issues in the aquaculture ponds of Taiwan. It is important to study the effects of arsenic on algal growth and toxin production in order to assess the ecological risk of arsenic pollution, or at least to understand naturally occurring ponds. The sensitivity of algae to arsenate has often been linked to the structural similarities between arsenate and phosphate. Thus, in this study we examined the effects of arsenate (10(-8) to 10(-4) M) on Microcystis aeruginosa TY-1 isolated from Taiwan, under two phosphate regimes. The present study showed that M. aeruginosa TY-1 was arsenate tolerant up to 10(-4) M, and that this tolerance was not affected by extracellular phosphate. However, it seems that extracellular phosphate contributed to microcystin production and leakage by M. aeruginosa in response to arsenate. Under normal phosphate conditions, total toxin yields after arsenate treatment followed a typical inverted U-shape hormesis, with a peak value of 2.25 +/- 0.06 mg L-1 in the presence of 10(-7) M arsenate, whereas 10(-8) to 10(-6) M arsenate increased leakage of similar to 75% microcystin. Under phosphate starvation, total toxin yields were not affected by arsenate, while 10(-6) and 10(-5) M arsenate stimulated microcystin leakage. It is suggested that arsenate may play a role in the process of microcystin biosynthesis and excretion. Given the arsenic concentrations in aquaculture ponds in Taiwan, arsenate favors survival of toxic M. aeruginosa in such ponds, and arsenate-stimulated microcystin production and leakage may have an impact on the food chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental. factors that affect the growth and microcystin production of microcystis have received worldwide attention because of the hazards microcystin poses to environmental safety and public health. Nevertheless, the effects of organic anthropogenic pollution on microcystis are rarely discussed. Gibberellin A(3) (GA(3)) is a vegetable hormone widely used in agriculture and horticulture that can contaminate water as an anthropogenic pollutant. Because of its common occurrence, we studied the effects of GA3 on growth and microcystin production of Microcystis aeruginosa (M. aeruginosa) PCC7806 with different concentrations (0.001-25mg/L) in batch culture. The control was obtained without gibberellin under the same culture conditions. Growth, estimated by dry weight and cell number, increased after the GA3 treatment. GA3 increased the amounts of chlorophyll a, phycocyanin and cellular-soluble protein in the cells of M. aeruginosa PCC7806, but decreased the accumulation of water-soluble carbohydrates. In addition, GA3 was observed to affect nitrogen absorption of the test algae, but to have no effect on the absorption of phosphorus. The amount of microcystin measured by enzyme-Linked immunosorbent assay (ELISA) increased in GA3 treatment groups, but the stimulatory effects were different in different culture phases. It is suggested that GA3 increases M. aeruginosa growth by stimulating its absorbance of nitrogen and increasing its ability to use carbohydrates, accordingly increasing cellular pigments and thus finally inducing accumulation of protein and microcystin. (C) 2007 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blooms of Microcystis aeruginosa frequently occur in many eutrophic lakes in China, however, there is very little experimental study on the relationship between Microcystis and rotifers from Chinese waters. The effects of different concentrations of toxic M. aeruginosa PCC7820 on two common freshwater rotifers Brachionus calyciflorus and B. rubens were investigated in laboratory experiments. B. calyciflorus was able to utilize this strain of M. aeruginosa as a food source. However, M. aeruginosa suppressed the survival and reproduction of B. calyciflorus at the highest concentration (10(6) cells/ml) probably due to the inadequate nutrition. B. rubens was inhibited by toxic M. aeruginosa PCC7820 and the inhibition increased with the increasing Microcystis concentration. Our study indicates that the two rotifers have different sensitivities to toxic M. aeruginosa and that toxic cyanobacteria may affect zooplankton community structure by differentially inhibiting the different zooplankton taxa.