945 resultados para METHANOL FUEL-CELL


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results on the performance of a 25 cm(2) liquid-feed solid-polymer-electrolyte direct methanol fuel cell (SPE-DMFC), operating under near-ambient conditions, are reported. The SPE-DMFC can yield a maximum power density of c. 200 mW cm(-2) at 90 C while operating with 1 M aqueous methanol and oxygen under ambient pressure. While operating the SPE-DMFC under similar conditions with air, a maximum power density of ca. 100 mW cm(-2) is achieved. Analysis of the electrode reaction kinetics parameters on the methanol electrode suggests that the reaction mechanism for methanol oxidation remains invariant with temperature. Durability data on the SPE-DMFC at an operational current density of 100 mA cm(-2) have also been obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A self-supported 40W Direct Methanol Fuel Cell (DMFC) system has been developed and performance tested. The auxiliaries in the DMFC system comprise a methanol sensor, a liquid-level indicator, and fuel and air pumps that consume a total power of about 5W. The system has a 15-cell DMFC stack with active electrode-area of 45 cm(2). The self-supported DMFC system addresses issues related to water recovery from the cathode exhaust, and maintains a constant methanol-feed concentration with thermal management in the system. Pure methanol and water from cathode exhaust are pumped to the methanol-mixing tank where the liquid level is monitored and controlled with the help of a liquid-level indicator. During the operation, methanol concentration in the feed solution at the stack outlet is monitored using a methanol sensor, and pure methanol is added to restore the desired methanol concentration in the feed tank by adding the product water from the cathode exhaust. The feed-rate requirements of fuel and oxidant are designed for the stack capacity of 40W. The self-supported DMFC system is ideally suited for various defense and civil applications and, in particular, for charging the storage batteries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the room temperature cell performance of alkaline direct methanol fuel cells (ADMFCs) with nitrogen-doped carbon nanotubes (NCNTs) as cathode materials. NCNTs show excellent oxygen reduction reaction activity and methanol tolerance in alkaline medium. The open-circuit-voltage (OCV) as well as the power density of ADMFCs first increases and then saturates with NCNT loading. Similarly, the OCV initially increases and reaches saturation with the increase in the concentration of methanol feed stock. Overall, NCNTs exhibit excellent catalytic activity and stability with respect to Pt based cathodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in-situ visualization of two-phase flow inside anode flow bed of a small liquid fed direct methanol fuel cells in normal and reduced gravity has been conducted in a drop tower. The anode flow bed consists of 11 parallel straight channels. The length, width and depth of single channel, which had rectangular cross section, are 48.0, 2.5 and 2.0 mm, respectively. The rib width was 2.0 mm. The experimental results indicated that when the fuel cell orientation is vertical, two-phase flow pattern in anode channels can evolve from bubbly flow in normal gravity into slug flow in microgravity. The size of bubbles in the reduced gravity is also bigger. In microgravity, the bubbles rising speed in vertical channels is obviously slower than that in normal gravity. When the fuel cell orientation is horizontal, the slug flow in the reduced gravity has almost the same characteristic with that in normal gravity. It implies that the effect of gravity on two-phase flow is small and the bubbles removal is governed by viscous drag. When the gas slugs or gas columns occupy channels, the performance of liquid fed direct methanol fuel cells is failing rapidly. It infers that in long-term microgravity, flow bed and operating condition should be optimized to avoid concentration polarization of fuel cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

直接甲醇燃料电池与间接甲醇燃料电池相比,体积更小,重量更轻,因此在一些领域有诱人的应用前景。但是,在它们实际应用之前,必须解决一些具体的技术难题。目前,甲醇从阳极透过到阴极是影响电池性能的主要难题之一,另外,催化剂和电极的制备方法也对电池的性能有重要的影响。本论文的主要目的在于研制低甲醇透过直接甲醇燃料电池并有效地提高电池的性能。为了减小甲醇在Nafion117膜中的透过,提出并研制了铭纳米粒子修饰的Nafion复合膜,该方法包括与[Pd(NH_4)_4]~(2+)离子的离子交换过程和化学还原过程。研究了一种制备高分散性铂基催化剂的方法。另外我们还研究并分析了不同的电池运行参数,例如温度、甲醇浓度等,刘一电池性能和甲醇透过的影响。主要结果如下:1.采用离子交换还原法在Nafionll7膜内部沉积纳米把粒子,制备成高聚物电解质复合膜。研究了镀把前后Nafion膜表面形态、甲醇透过和膜的电导的变化和对直接甲醇燃料电池的性能的影响等。由于把纳米粒子阻碍了甲醇透过,同时,由于它对氢离子的强吸引力,不但不对氢离子的透过产生影响,而且还提高了膜佩狗电导。所以镀把后电解质膜的甲醇透过减少,膜电导增加,无论在低电流密度区还是在高电流密度区,电池性能都有效地提高。2.研究了一种制备高分散性铂基催化剂的新方法一预沉淀还原法。并采用TEM,XRD和电化学等技术来表征催化剂中铂的粒径、晶态结构和催化活性:与传统的化学还原法相比,因为该方法在化学还原过程中反应物与载体的作用力得到增强,所以采用该方法制备的催化剂铂分散性更好、晶态结构更低、粒径更小并且催化活性更好。该方法在直接甲醇燃料一电池中有应用价值。3.研究并分析了不同的电池运行参数,例如温度、甲醇浓度等,对电池性能和甲醇透过的影响。研究发现当电池运行温度增加时,电池性能提高,甲醇透过增加;甲醇浓度增加时,甲醇透过增加,但是,甲醇浓度对电池性能有不同的影响,在低甲醇浓度区,甲醇浓度增加,电池性能提高;在高甲醇浓度区,甲醇浓度增加,电池性能降低;存在一个最佳甲醇浓度,在该甲醇浓度的条件下,电池的性能最高。实验结果为:采用Nafion117膜时,电池的最佳甲醇浓度为2. 0 mol/L,采用镀把Nafion117膜时,电池的最佳甲醇浓度高于4.0 mol/Lo

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental study of a liquid fed direct methanol fuel cell has been conducted in different gravity environments. A small single cell with 5 cm x 5 cm active area has single serpentine channel on the graphite cathode polar plate and 11 parallel straight channels on the graphite anode flow bed. Cell voltage and current have been measured and two-phase flow in anode channels has been in situ visually observed. The experimental results indicate that the effect of gravity on power performance of the direct methanol fuel cell is large when the concentration polarization governs fuel cells operation. Gravitational effect becomes larger at higher current density. Increasing methanol feeding molarity is conducive to weaken the influence of gravity on performance of liquid fed direct methanol fuel cells. Increasing feeding flow rate of methanol solution from 6 to 15 ml/min could reduce the size of carbon dioxide bubbles, while the influence of gravity still exist. Transport phenomena inside direct methanol fuel cells in microgravity is also analyzed and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Black Pearls 2000 (designated as BP- 2000) and Vulcan XC-72 (designated as XC-72) carbon blacks were chosen as supports to prepare 40 wt % (the targeted value) Pt/C catalysts by a modified polyol process. The carbon blacks were characterized by N-2 adsorption and Fourier tranform infrared spectroscopy. The prepared catalysts were characterized by inductively coupled plasma atomic emission spectroscopy, transmission electron microscopy, scanning electron microscopy (SEM), in situ cyclic voltammetry, and current-voltage curves. On BP- 2000, Pt nanoparticles were larger in size and more unevenly distributed than on XC-72. It was observed by SEM that the corresponding catalyst layer on BP- 2000 was thicker than that of XC-72 based catalyst at almost the identical catalyst loading. And the BP- 2000 supported catalyst gave a better single cell performance at high current densities. These results suggest that the performance improvement is due to the enhanced oxygen diffusion and water removal capability when BP- 2000 is used as cathode catalyst support. (C) 2004 The Electrochemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 40 wt% Pt/C cathode electrocatalyst with controlled Pt particle size of similar to 2.9 nm showing better performance than commercial catalyst for direct methanol fuel cell was prepared by a polyol process with water but without using stabilizing agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-walled carbon nanotubes supported Pt-Fe cathodic catalyst shows higher specific activity towards oxygen reduction reaction as compared to Pt/MWNTs when employed as cathodic catalyst in direct methanol fuel cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bisphenol monomer 4-carboxylphenyl hydroquinone (4C-PH) containing carboxyl groups was synthesized by diazotization reaction of p-aminobenzoic acid and 1,4-benzoquinone and subsequent reductive reaction. Copolymerization of bisphenol A, 4C-PH, sodium 5,5'-carbonylbis(2-fluorobenzene-sulfonate) and 4,4'-difluorobenzophenone at various molar ratios through aromatic nucleophilic substitution reaction resulted in a new sulfonated poly(ether ether ketone) containing pendant carboxyl groups (C-SPEEK). The structures of the monomer 4C-PH and copolymers were confirmed by FT-IR and H-1 NMR. Flexible and transparent membranes with sulfonic and carboxylic acid groups as the proton conducting sites were prepared. The dependence of ion-exchange capacity (IEC), water uptake, proton conductivity and methanol permeability on the degree of sulfonation has been studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PtRu/C electrocatalyst with high loading (PtRu of 60 wt%) was prepared by synergetic effect of ultrasonic radiation and mechanical stirring. Physicochemical characterizations show that the size of PtRu particles of as-prepared PtRu/C catalyst is only several nanometers (2-4 nm), and the PtRu nanoparticles were homogeneously dispersed on carbon surface. Electrochemistry and single passive direct methanol fuel cell (DMFC) tests indicate that the as-prepared PtRu/C electrocatalyst possessed larger electrochemical active surface (EAS) area and enhanced electrocatalytic activity for methanol oxidation reaction (MOR). The enhancement could be attributed to the synergetic effect of ultrasound radiation and mechanical stirring, which can avoid excess concentration of partial solution and provide a uniform environment for the nucleation and growth of metal particles simultaneously hindering the agglomeration of PtRu particles on carbon surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As inorganic proton conductors. phosphomolybdic acid (PMA), phosphotungstic acid (PWA) and silicotungstic acid (SiWA) are extremely attractive for proton-conducting composite membranes. An interesting phenomenon has been found in our previous experiments that the mixing of chitosan (CS) solution and different heteropolyacids (HPAs) leads to strong electrostatic interaction to form insoluble complexes. These complexes in the form of membrane (CS/PMA, CS/PWA and CS/SiWA composite membranes) have been prepared and evaluated as novel proton-conducting membranes for direct methanol fuel cells. Therefore, HPAs can be immobilized within the membranes through electrostatic interaction, which overcomes the leakage problem from membranes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel method was developed to prepare the highly active Pt-Ru-P/C catalyst. The deposition of phosphorus significantly increased electrochemical active surface (EAS) area of catalyst by reduces Pt-Ru particle size. TEM images show that Pt-Ru-P nanoparticles have an uniform size distribution with an average diameter of 2 nm. Cyclic voltammetry (CV), Chronoamperometry (CA), and CO stripping indicate that the presence of non-metal phosphorus as an interstitial species Pt-Ru-P/C catalyst shows high activity for the electro-oxidation of methanol, and exhibit enhanced performance in the oxidation of carbon monoxide compared with Pt-Ru/C catalyst. At 30 degrees C and pure oxygen was fed to the cathode, the maximum power density of direct methanol fuel cell (DMFC) with Pt-Ru-P/C and Pt-Ru/C catalysts as anode catalysts was 61.5 mW cm(-2) and 36.6 mW cm(-2), respectively. All experimental results indicate that Pt-Ru-P/C catalyst was the optimum anode catalyst for direct methanol fuel cell.