955 resultados para MESH REFINEMENT
Resumo:
Alternative meshes of the sphere and adaptive mesh refinement could be immensely beneficial for weather and climate forecasts, but it is not clear how mesh refinement should be achieved. A finite-volume model that solves the shallow-water equations on any mesh of the surface of the sphere is presented. The accuracy and cost effectiveness of four quasi-uniform meshes of the sphere are compared: a cubed sphere, reduced latitude–longitude, hexagonal–icosahedral, and triangular–icosahedral. On some standard shallow-water tests, the hexagonal–icosahedral mesh performs best and the reduced latitude–longitude mesh performs well only when the flow is aligned with the mesh. The inclusion of a refined mesh over a disc-shaped region is achieved using either gradual Delaunay, gradual Voronoi, or abrupt 2:1 block-structured refinement. These refined regions can actually degrade global accuracy, presumably because of changes in wave dispersion where the mesh is highly nonuniform. However, using gradual refinement to resolve a mountain in an otherwise coarse mesh can improve accuracy for the same cost. The model prognostic variables are height and momentum collocated at cell centers, and (to remove grid-scale oscillations of the A grid) the mass flux between cells is advanced from the old momentum using the momentum equation. Quadratic and upwind biased cubic differencing methods are used as explicit corrections to a fast implicit solution that uses linear differencing.
Resumo:
El principal objetivo de la presente tesis es el de desarrollar y probar un código capaz de resolver las ecuaciones de Maxwell en el dominio del tiempo con Malla Refinada Adaptativa (AMR por sus siglas en inglés). AMR es una técnica de cálculo basada en dividir el dominio físico del problema en distintas mallas rectangulares paralelas a las direcciones cartesianas. Cada una de las mallas tendrá distinta resolución y aquellas con mayor resolución se sitúan allí dónde las ondas electromagnéticas se propagan o interaccionan con los materiales, es decir, dónde mayor precisión es requerida. Como las ondas van desplazándose por todo el dominio, las mayas deberán seguirlas. El principal problema al utilizar esta metodología se puede encontrar en las fronteras internas, dónde las distintas mallas se unen. Ya que el método más corrientemente utilizado para resolver las ecuaciones de Maxwell es el de las diferencias finitas en el dominio del tiempo (FDTD por sus siglas en inglés) , el trabajo comenzó tratando de adaptar AMR a FDTD. Tras descubrirse que esta interacción resultaba en problemas de inestabilidades en las fronteras internas antes citadas, se decidió cambiar a un método basado en volúmenes finitos en el dominio del tiempo (FVTD por sus siglas en inglés). Este se basa en considerar la forma en ecuaciones de conservación de las ecuaciones de Maxwell y aplicar a su resolución un esquema de Godunov. Se ha probado que es clave para el correcto funcionamiento del código la elección de un limitador de flujo que proteja los extremos de la onda de la disipación típica de los métodos de este tipo. Otro problema clásico a la hora de resolver las ecuaciones de Maxwell es el de tratar con las condiciones de frontera física cuando se simulan dominios no acotados, es decir, dónde las ondas deben salir del sistema sin producir ninguna reflexión. Normalmente la solución es la de disponer una banda absorbente en las fronteras físicas. En AMREM se ha desarrollado un nuevo método basado en los campos característicos que con menor requisito de CPU funcina suficientemente bien incluso en los casos más desfaborables. El código ha sido contrastado con soluciones analíticas de diferentes problemas y también su velocidad ha sido comparada con la de Meep, uno de los programas más conocidos del ámbito. También algunas aplicaciones han sido simuladas con el fin de demostrar el amplio espectro de campos en los que AMREM puede funcionar como una útil herramienta.
Resumo:
This lecture course covers the theory of so-called duality-based a posteriori error estimation of DG finite element methods. In particular, we formulate consistent and adjoint consistent DG methods for the numerical approximation of both the compressible Euler and Navier-Stokes equations; in the latter case, the viscous terms are discretized based on employing an interior penalty method. By exploiting a duality argument, adjoint-based a posteriori error indicators will be established. Moreover, application of these computable bounds within automatic adaptive finite element algorithms will be developed. Here, a variety of isotropic and anisotropic adaptive strategies, as well as $hp$-mesh refinement will be investigated.
Resumo:
We propose an alternative crack propagation algo- rithm which effectively circumvents the variable transfer procedure adopted with classical mesh adaptation algo- rithms. The present alternative consists of two stages: a mesh-creation stage where a local damage model is employed with the objective of defining a crack-conforming mesh and a subsequent analysis stage with a localization limiter in the form of a modified screened Poisson equation which is exempt of crack path calculations. In the second stage, the crack naturally occurs within the refined region. A staggered scheme for standard equilibrium and screened Poisson equa- tions is used in this second stage. Element subdivision is based on edge split operations using a constitutive quantity (damage). To assess the robustness and accuracy of this algo- rithm, we use five quasi-brittle benchmarks, all successfully solved.
Resumo:
An improvement to the quality bidimensional Delaunay mesh generation algorithm, which combines the mesh refinement algorithms strategy of Ruppert and Shewchuk is proposed in this research. The developed technique uses diametral lenses criterion, introduced by L. P. Chew, with the purpose of eliminating the extremely obtuse triangles in the boundary mesh. This method splits the boundary segment and obtains an initial prerefinement, and thus reducing the number of necessary iterations to generate a high quality sequential triangulation. Moreover, it decreases the intensity of the communication and synchronization between subdomains in parallel mesh refinement.
Resumo:
An improvement to the quality bidimensional Delaunay mesh generation algorithm, which combines the mesh refinement algorithms strategy of Ruppert and Shewchuk is proposed in this research. The developed technique uses diametral lenses criterion, introduced by L. P. Chew, with the purpose of eliminating the extremely obtuse triangles in the boundary mesh. This method splits the boundary segment and obtains an initial prerefinement, and thus reducing the number of necessary iterations to generate a high quality sequential triangulation. Moreover, it decreases the intensity of the communication and synchronization between subdomains in parallel mesh refinement. © 2008 IEEE.
Resumo:
Mesh adaptation based on error estimation has become a key technique to improve th eaccuracy o fcomputational-fluid-dynamics computations. The adjoint-based approach for error estimation is one of the most promising techniques for computational-fluid-dynamics applications. Nevertheless, the level of implementation of this technique in the aeronautical industrial environment is still low because it is a computationally expensive method. In the present investigation, a new mesh refinement method based on estimation of truncation error is presented in the context of finite-volume discretization. The estimation method uses auxiliary coarser meshes to estimate the local truncation error, which can be used for driving an adaptation algorithm. The method is demonstrated in the context of two-dimensional NACA0012 and three-dimensional ONERA M6 wing inviscid flows, and the results are compared against the adjoint-based approach and physical sensors based on features of the flow field.
Resumo:
We propose a pre-processing mesh re-distribution algorithm based upon harmonic maps employed in conjunction with discontinuous Galerkin approximations of advection-diffusion-reaction problems. Extensive two-dimensional numerical experiments with different choices of monitor functions, including monitor functions derived from goal-oriented a posteriori error indicators are presented. The examples presented clearly demonstrate the capabilities and the benefits of combining our pre-processing mesh movement algorithm with both uniform, as well as, adaptive isotropic and anisotropic mesh refinement.
Resumo:
OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel as it is simple to code and sufficient for practical engineering design problems. This also makes the code much more ‘user-friendly’ than structured grid approaches as the gridding process is done automatically. The CFD methodology relies on a finite-volume formulation of the unsteady Euler equations and is solved using a standard explicit Godonov (MUSCL) scheme. Both octree-based adaptive mesh refinement and shared-memory parallel processing capability have also been incorporated. For further details on the theory behind the code, see the companion report 2007/12.
Resumo:
The most common techniques for stress analysis/strength prediction of adhesive joints involve analytical or numerical methods such as the Finite Element Method (FEM). However, the Boundary Element Method (BEM) is an alternative numerical technique that has been successfully applied for the solution of a wide variety of engineering problems. This work evaluates the applicability of the boundary elem ent code BEASY as a design tool to analyze adhesive joints. The linearity of peak shear and peel stresses with the applied displacement is studied and compared between BEASY and the analytical model of Frostig et al., considering a bonded single-lap joint under tensile loading. The BEM results are also compared with FEM in terms of stress distributions. To evaluate the mesh convergence of BEASY, the influence of the mesh refinement on peak shear and peel stress distributions is assessed. Joint stress predictions are carried out numerically in BEASY and ABAQUS®, and analytically by the models of Volkersen, Goland, and Reissner and Frostig et al. The failure loads for each model are compared with experimental results. The preparation, processing, and mesh creation times are compared for all models. BEASY results presented a good agreement with the conventional methods.
Resumo:
Variational steepest descent approximation schemes for the modified Patlak-Keller-Segel equation with a logarithmic interaction kernel in any dimension are considered. We prove the convergence of the suitably interpolated in time implicit Euler scheme, defined in terms of the Euclidean Wasserstein distance, associated to this equation for sub-critical masses. As a consequence, we recover the recent result about the global in time existence of weak-solutions to the modified Patlak-Keller-Segel equation for the logarithmic interaction kernel in any dimension in the sub-critical case. Moreover, we show how this method performs numerically in one dimension. In this particular case, this numerical scheme corresponds to a standard implicit Euler method for the pseudo-inverse of the cumulative distribution function. We demonstrate its capabilities to reproduce easily without the need of mesh-refinement the blow-up of solutions for super-critical masses.
Resumo:
To investigate the thennal effects of latent heat in hydrothennal settings, an extension was made to the existing finite-element numerical modelling software, Aquarius. The latent heat algorithm was validated using a series of column models, which analysed the effects of penneability (flow rate), thennal gradient, and position along the two-phase curve (pressure). Increasing the flow rate and pressure increases displacement of the liquid-steam boundary from an initial position detennined without accounting for latent heat while increasing the thennal gradient decreases that displacement. Application to a regional scale model of a caldera-hosted hydrothennal system based on a representative suite of calderas (e.g., Yellowstone, Creede, Valles Grande) led to oscillations in the model solution. Oscillations can be reduced or eliminated by mesh refinement, which requires greater computation effort. Results indicate that latent heat should be accounted for to accurately model phase change conditions in hydrothennal settings.
Resumo:
There are many ways to generate geometrical models for numerical simulation, and most of them start with a segmentation step to extract the boundaries of the regions of interest. This paper presents an algorithm to generate a patient-specific three-dimensional geometric model, based on a tetrahedral mesh, without an initial extraction of contours from the volumetric data. Using the information directly available in the data, such as gray levels, we built a metric to drive a mesh adaptation process. The metric is used to specify the size and orientation of the tetrahedral elements everywhere in the mesh. Our method, which produces anisotropic meshes, gives good results with synthetic and real MRI data. The resulting model quality has been evaluated qualitatively and quantitatively by comparing it with an analytical solution and with a segmentation made by an expert. Results show that our method gives, in 90% of the cases, as good or better meshes as a similar isotropic method, based on the accuracy of the volume reconstruction for a given mesh size. Moreover, a comparison of the Hausdorff distances between adapted meshes of both methods and ground-truth volumes shows that our method decreases reconstruction errors faster. Copyright © 2015 John Wiley & Sons, Ltd.
Resumo:
Simulations of the global atmosphere for weather and climate forecasting require fast and accurate solutions and so operational models use high-order finite differences on regular structured grids. This precludes the use of local refinement; techniques allowing local refinement are either expensive (eg. high-order finite element techniques) or have reduced accuracy at changes in resolution (eg. unstructured finite-volume with linear differencing). We present solutions of the shallow-water equations for westerly flow over a mid-latitude mountain from a finite-volume model written using OpenFOAM. A second/third-order accurate differencing scheme is applied on arbitrarily unstructured meshes made up of various shapes and refinement patterns. The results are as accurate as equivalent resolution spectral methods. Using lower order differencing reduces accuracy at a refinement pattern which allows errors from refinement of the mountain to accumulate and reduces the global accuracy over a 15 day simulation. We have therefore introduced a scheme which fits a 2D cubic polynomial approximately on a stencil around each cell. Using this scheme means that refinement of the mountain improves the accuracy after a 15 day simulation. This is a more severe test of local mesh refinement for global simulations than has been presented but a realistic test if these techniques are to be used operationally. These efficient, high-order schemes may make it possible for local mesh refinement to be used by weather and climate forecast models.
Resumo:
Although climate models have been improving in accuracy and efficiency over the past few decades, it now seems that these incremental improvements may be slowing. As tera/petascale computing becomes massively parallel, our legacy codes are less suitable, and even with the increased resolution that we are now beginning to use, these models cannot represent the multiscale nature of the climate system. This paper argues that it may be time to reconsider the use of adaptive mesh refinement for weather and climate forecasting in order to achieve good scaling and representation of the wide range of spatial scales in the atmosphere and ocean. Furthermore, the challenge of introducing living organisms and human responses into climate system models is only just beginning to be tackled. We do not yet have a clear framework in which to approach the problem, but it is likely to cover such a huge number of different scales and processes that radically different methods may have to be considered. The challenges of multiscale modelling and petascale computing provide an opportunity to consider a fresh approach to numerical modelling of the climate (or Earth) system, which takes advantage of the computational fluid dynamics developments in other fields and brings new perspectives on how to incorporate Earth system processes. This paper reviews some of the current issues in climate (and, by implication, Earth) system modelling, and asks the question whether a new generation of models is needed to tackle these problems.