455 resultados para MALEIC-ANHYDRIDE
Resumo:
The structure of the by-product, obtained in the Diels-Alder condensation of maleic anhydride with β-trans-ocimene followed by distillation of the adduct formed, has been established as 2-isopropylidene-4-methyl-7-carboxy- ,3,3a,6,7,7a-hexahydroindanone (IVa) and the mechanism of its formation from the adduct (II) discussed. Some hitherto unreported reactions of the maleic anhydride adduct (II) and its derivatives are described. These throw light on the stereochemistry of the adduct and derived products.
Resumo:
By a series of reactions the Diels-Alder adduct IV of maleic anhydride and β-trans-Ocimene gave 1-hydroxy-1,4-dimethyl-7-hydroxymethyloctahydroindane (XII). Its further synthetic elaboration furnished 1,4-dimethyl-7-(2-ethoxycarbonyl-1-propenyl)-Δ1-octahydroindane of the valerenic acid skeleton.
Resumo:
A new case of the uncommon cis-trans enantiomerism is presented. The titled anhydride adducts were prepared in good yields by the known reaction of three 6-arylfulvenes with maleic anhydride (aryl = phenyl, p-tolyl and p-anisyl). The exo adducts were converted to the corresponding imides by reaction with (1S)-1-(naphth-1-yl)ethylamine in similar to 80% yields, and the resulting diastereomeric imides separated by silica gel column chromatography. They were hydrolysed and recyclised to the chiral anhydrides, in `one-pot' with 10% NaOH-EtOH, followed by treatment with 2 M HCl, in similar to 40% yields. The titled anhydrides were thus obtained in homochiral form, in enantiomeric purities (generally) of similar to 90% as indicated by chiral HPLC. The chiral anhydrides were also converted to the corresponding imides (presumably stereospecifically), by treatment with ammonia solution in excellent yields. The crystal structure of one of the above diastereomeric imides (derived from 6-phenylfulvene) was determined, and based on the known (S)-configuration of the naphthylethylamine moiety, the `configurations' of the original anhydride adducts were assigned. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Laser micro-Raman spectroscopic measurements were done on the amorphous conducting carbon films obtained from maleic anhydride by pyrolysis process. We have found a predominant broad peak around 1140 cm(-1), in addition to the normally observed peaks in amorphous carbons around 1350 and 1600 cm(-1), and peak of medium intensity around 800 cm(-1). Here we discuss the possibility of conjugated polymer like bond alternating structure which can give rise to these unusual Raman features. (C) 1997 American Institute of Physics.
Resumo:
A novel vinyl ether, 2,2-dimethyl-4-vinyioxymethyl-1,3-dioxol (DMVMD), that has a dimethyl ketal protected vicinal diol functionality was synthesizied from readily available starting materials, such as glycerol, acetone and acetylene. Copolymerisation of DMVMD with maleic anhydride (MAH) in various molar ratios was carried out using a free radical initiator. The composition of the copolymer was established by conductometric titration, and was found to be 1:1 irrespective of the monomer feed composition thus establishing its alternating nature. The copolymer formed clear free standing films upon solvent casting which became insoluble upon prolonged exposure to ambeint atmosphere. The insolubility is ascribed to moisture induced crosslinking. A plausible mechanism for the crosslinking involves the hydrolysis of some of the anhydride groups, followed by acid catalysed deketalization, and then by the reaction of the alcoholic groups, thus generated, with the residual anhydride to give ester crosslinks. This hypothesis was confirmed both by model reactions and insitu FT-IR studies.
Resumo:
Maleic anhydride (MAH) has been grafted onto high density polyethylene (HDPE) with benzoyl peroxide (BOP) initiator in toluene solution. Maximum degree of grafting (12%) without crosslinking has been obtained using MAH/HDPE and BOP/HDPE weight ratios of 1.0 and 0.15 respectively, at 110 degrees C. The HDPE-g-MAH compatibilizer is found to drastically reduce the dispersed phase size and also to produce homogeneous blends for relatively low concentrations of dispersed phase in HDPE/nylon blends. Addition of this compatibilizer results in increase of tensile strength and modulus with increasing nylon content of HDPE/nylon blends, while the opposite is found for the blends without any added compatibilizer.
Resumo:
Tapioca starch in both glycerol-plasticized and in unplasticized states was blended with high-density polyethylene (HDPE) using HDPE-g-maleic anhydride as the compatibilizer. The impact and tensile properties of the blends were measured according to ASTM methods. The results reveal that blends containing plasticized starch have better mechanical properties than those containing unplasticized starch. High values of elongation at break at par with those of virgin HDPE could be obtained for blends, even with high loading of plasticized starch. Morphological studies by SEM microscopy of impact-fractured specimens of such blends revealed a ductile fracture, unlike blends with unplasticized starch at such high loadings, which showed brittle fracture, even with the addition of compatibilizer. In general, blends of HDPE and plasticized starch with added compatibilizer show better mechanical properties than similar blends containing unplasticized starch. (C) 2001 John Wiley & Sons, Inc.
Resumo:
The reaction rates of the hydrogenation of maleic anhydride (MAH) and succinic anhydride (SAH) were significantly accelerated and the selectivity to gamma-butyrolactone (GBL) was enhanced largely when the reaction mixture was pressurized by a non-reactant of CO2. Above 99% selectivity to GBL was achieved in 14 MPa CO2, the superior selectivity in scCO(2) was attributed to that MAH and/or SAH could be extracted to CO2 phase and separated from H2O, the hydrolysis were thus minimized and so the selectivity to GBL was improved.
Resumo:
Hydrogenation of maleic anhydride (MAH) with Pd/C catalysts in supercritical carbon dioxide (scCO(2)) was investigated. The selectivity for gamma-butyrolactone (GBL) reached 97.3% in scCO(2) at 100% conversion of MAH, which was notably higher than that of 77.4% obtained in organic solvent of ethylene glycol dimethyl ether (EGDME). The particle size of Pd exhibited large influence on the reaction rate and selectivity of GBL. Higher selectivity of GBL was obtained with Pd/C catalyst of smaller Pd particle size, and the rate of GBL selectivity increase as a function of CO2 pressure was found to be significantly correlated with Pd particle size.
Resumo:
Monte Carlo simulation was used to study the graft of maleic anhydride (MAH) onto linear polyethylene (PE-g-MAH) initiated by dicumyl peroxide (DCP). Simulation results revealed that major MAH monomers attached onto PE chains as branched graft at higher MAH content. However, at extremely low MAH content, the fraction of bridged graft was very close to that of branched graft. This conclusion was somewhat different from the conventional viewpoint, namely, the fraction of bridged graft was always much lower than that of branched graft under any condition. Moreover, the results indicated that the grafting degree increased almost linearly to MAH and DCP concentrations. On the other hand, it was found that the amount of grafted MAH dropped sharply with increasing the length of grafted MAH, indicating that MAH monomers were mainly attached onto the PE chain as single MAH groups or very short oligomers. With respect to the crosslink of PE, the results showed that the fraction of PE-(MAH)(n)-PE crosslink structure increased continuously, and hence the fraction of PE-PE crosslink decreased with increasing MAH concentration.
Resumo:
Rare earth oxide, neodymium oxide (Nd2O3), CO-catalyzed melt grafting of maleic anhydride (MAH) onto co-polypropylene (co-PP) in the presence of dicumyl peroxide (DCP) was carried out by reactive extrusion. The experimental results reveal that the addition of Nd2O3 as a coagent leads to an enhancement in both MFR and the grafting degree of MAH, along with a simultaneous decrease in the gel content. When the Nd2O3 concentration is 6.0 mmol%, the increment of the grafting degree of MAH maximally is up to about 20% compared with the related system without adding Nd2O3, and the gel content decreases simultaneously to a very low level of about 3%. Attenuated total reflection FTIR (ATR-FTIR) indicates that the gel in the graft copolymers mainly arise from the cross-linking reaction between ethylene units of co-PP. A reasonable reaction mechanism has been put forward on the basis of our experimental results and other mechanisms reported in the literature. We also tentatively explain above results by means of synergistic effect between DCP and Nd2O3, which causes a higher concentration of the macroradical, in particular the tertiary macroradical.
Resumo:
The melt rheological properties of binary uncompatibilized polypropylene -polyamide6 (PP-PA6) blends and ternary blends compatibilized with maleic anhydride-grafted PP (PP-PP-g-MAH-PA6) were studied using a capillary rheometer. The experimental shear viscosities of blends were compared with those calculated from Utracki's relation. The deviation value delta between these two series of data was obtained. In binary PP-PA6 blends, when the compatibility between PP and PA6 was poor, the deformation recovery of dispersed PA6 particles played the dominant role during the capillary flow, the experimental values were smaller than those calculated, and delta was negative. The higher the dispersed phase content, the more deformed the droplets were and the lower the apparent shear viscosity. Also, the absolute value of delta increased with the dispersed phase composition. In ternary PP-PP-g-MAH-PA6 systems, when the compatibility between PP and PA6 was enhanced by PP-g-MAH, the elongation and break-up of the dispersed particles played the dominant role, and the experimental values were higher than calculated. It was observed that the higher the dispersion of the PA6 phase, the higher the delta values of the ternary blends and the larger the positive deviation.
Resumo:
This paper reports on a successful application of the concept of nanoreactors to effectively controlling the selectivity of the free radical grafting of maleic anhydride (MAH) onto polypropylene (PP) in the melt, an industrially relevant process. More specifically, a free radical initiator of type ROOR was first confined into (or encapsulated by) the galleries of an organically modified montmorillonite (o-MMT) whose interdistance was 2.4 nm. Primary free radicals (RO center dot) formed inside the o-MMT galleries had to diffuse out before they could react with the PP backbone. The controlled release of the primary free radicals significantly increased the grafting degree of MAH onto PP and greatly reduced the level of the chain scission of the latter. Those results were better understood by electron spin resonance studies on model systems and by Monte Carlo simulations.