952 resultados para M2-m3 Loop


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in the extracellular M2-M3 loop of the glycine receptor (GlyR) alpha1 subunit have been shown previously to affect channel gating. In this study, the substituted cysteine accessibility method was used to investigate whether a structural rearrangement of the M2-M3 loop accompanies GlyR activation. All residues from R271C to V277C were covalently modified by both positively charged methanethiosulfonate ethyltrimethylammonium (MTSET) and negatively charged methanethiosulfonate ethylsulfonate (MTSES), implying that these residues form an irregular surface loop. The MTSET modification rate of all residues from R271C to K276C was faster in the glycine-bound state than in the unliganded state. MTSES modification of A272C, L274C, and V277C was also faster in the glycine-bound state. These results demonstrate that the surface accessibility of the M2-M3 loop is increased as the channel transitions from the closed to the open state, implying that either the loop itself or an overlying domain moves during channel activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binding of agonists to nicotinic acetylcholine receptors generates a sequence of changes that activate a cation-selective conductance. By measuring electrophysiological responses in chimeric alpha7/alpha3 receptors expressed in Xenopus oocytes, we have showed the involvement of the M2-M3 loop in coupling agonist binding to the channel gate. An aspartate residue therein, Asp-266 in the alpha7 subunit, was identified by site-directed mutagenesis as crucial, since mutants at this position exhibited very poor functional responses to three different nicotinic agonists. We have extended this investigation to another neuronal nicotinic receptor (alpha3/beta4), and found that a homologous residue in the beta4 subunit, Asp-268, played a similar role in coupling. These findings are consistent with a hypothesis that the aspartate residue in the M2-M3 loop, which is conserved in all homomer-forming alpha-type subunits and all neuronal beta-type subunits that combine to form functional receptors, is a major determinant of information transmission from binding site to channel gate in all neuronal nicotinic receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The external loop linking the M2 and M3 transmembrane domains is crucial for coupling agonist binding to channel gating in the glycine receptor chloride channel (GlyR). A substituted cysteine accessibility scan previously showed that glycine activation increased the surface accessibility of 6 contiguous residues (Arg(271) Lys(276)) toward the N-terminal end of the homomeric alpha 1 GlyR M2 - M3 loop. In the present study we used a similar approach to determine whether the allosteric antagonist, picrotoxin, could impose conformational changes to this domain that cannot be induced by varying agonist concentrations alone. Picrotoxin slowed the reaction rate of a sulfhydryl-containing compound ( MTSET) with A272C, S273C, and L274C. Before interpreting this as a picrotoxin-specific conformational change, it was necessary to eliminate the possibility of steric competition between picrotoxin and MTSET. Accordingly, we showed that picrotoxin and the structurally unrelated blocker, bilobalide, were both trapped in the R271C GlyR in the closed state and that a point mutation to the pore-lining Thr(6') residue abolished inhibition by both compounds. We also demonstrated that the picrotoxin dissociation rate was linearly related to the channel open probability. These observations constitute a strong case for picrotoxin binding in the pore. We thus conclude that the picrotoxin-specific effects on the M2 - M3 loop are mediated allosterically. This suggests that the M2 - M3 loop responds differently to the occupation of different binding sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the ionotropic glutamate receptor, the global conformational changes induced by partial agonists are smaller than those induced by full agonists. However, in the pentameric ligand-gated ion channel receptor family, the structural basis of partial agonism is not understood. This study investigated whether full and partial agonists induce different conformation changes in the glycine receptor chloride channel ( GlyR). A substituted cysteine accessibility analysis demonstrated previously that glycine binding induced an increase in surface accessibility of all residues from Arg(271) to Lys(276) in the M2-M3 domain of the homomeric alpha1 GlyR. Here we compare the surface accessibility changes induced by the full agonist, glycine, and the partial agonist, taurine. In GlyRs incorporating the A272C, S273C, L274C, or P275C mutation, the reaction rate of the cysteine-specific compound, methanethiosulfonate ethyltrimethylammonium, depended on how strongly the receptors were activated but was agonist-independent. Reaction rates could not be compared in the R271C and K276C mutant GlyRs because methanethiosulfonate ethyltrimethylammonium did not modify the extremely small currents induced by saturating taurine or equivalent low glycine concentrations. The results indicate that bound taurine and glycine molecules impose identical conformational changes to the M2-M3 domain. We therefore conclude that the higher efficacy of glycine is due to an increased ability to stabilize a common activated configuration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular mechanisms of zinc potentiation were investigated in recombinant human alpha 1 glycine receptors (GlyRs) by whole-cell patch-clamp recording and [H-3]strychnine binding assays. In the wild-type (WT) GlyR, 1 mu M zinc enhanced the apparent binding affinity of the agonists glycine and taurine and reduced their concentrations required for half-maximal activation. Thus, in the WT GlyR, zinc potentiation apparently occurs by enhancing agonist binding. However, analysis of GlyRs incorporating mutations in the membrane-spanning domain M1-M2 and M2-M3 loops, which are both components of the agonist gating mechanism, indicates that most mutations uncoupled zinc potentiation from glycine-gated currents but preserved zinc potentiation of taurine-gated currents. One such mutation in the M2-M3 loop, L274A, abolished the ability of zinc to potentiate taurine binding but did not inhibit zinc potentiation of taurine-gated currents. In this same mutant where taurine acts as a partial agonist, zinc potentiated taurine-gated currents but did not potentiate taurine antagonism of glycine-gated currents, suggesting that zinc interacts selectively with the agonist transduction pathway. The intracellular M246A mutation, which is unlikely to bind zinc, also disrupted zinc potentiation of glycine currents. Thus, zinc potentiation of the GlyR is mediated via allosteric mechanisms that are independent of its effects on agonist binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fast synaptic neurotransmission is mediated by transmitter-activated conformational changes in ligand-gated ion channel receptors, culminating in opening of the integral ion channel pore. Human hereditary hyperekplexia, or startle disease, is caused by mutations in both the intracellular or extracellular loops flanking the pore-lining M2 domain of the glycine receptor alpha 1 subunit. These flanking domains are designated the M1-M2 loop and the M2-M3 loop respectively. We show that four startle disease mutations and six additional alanine substitution mutations distributed throughout both loops result in uncoupling of the ligand binding sites from the channel activation gate. We therefore conclude that the M1-M2 and M2-M3 loops act in parallel to activate the channel. Their locations strongly suggest that they act as hinges governing allosteric control of the M2 domain. As the members of the ligand-gated ion channel superfamily share a common structure, this signal transduction model may apply to all members of this superfamily.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the role of beta subunits in the activation of alphabeta heteromeric glycine receptor (GlyR) chloride channels recombinantly expressed in HEK293 cells. The approach involved incorporating mutations into corresponding positions in alpha and beta subunits and comparing their effects on receptor function. Although cysteine-substitution mutations to residues in the N-terminal half of the alpha subunit M2-M3 loop dramatically impaired the gating efficacy, the same mutations exerted little effect when incorporated into corresponding positions of the beta subunit. Furthermore, although the alpha subunit M2-M3 loop cysteines were modified by a cysteine-specific reagent, the corresponding beta subunit cysteines showed no evidence of reactivity. These observations suggest structural or functional differences between alpha and beta subunit M2-M3 loops. In addition, a threonine-->leucine mutation at the 9' position in the beta subunit M2 pore-lining domain dramatically increased the glycine sensitivity. By analogy with the effects of the same mutation in other ligand-gated ion channels, it was concluded that the mutation affected the GlyR activation mechanism. This supports the idea that the GlyR beta subunit is involved in receptor gating. In conclusion, this study demonstrates that beta subunits contribute to the activation of the GlyR, but that their involvement in this process is significantly different to that of the alpha subunit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ginkgolides are potent blockers of the glycine receptor Cl- channel (GlyR) pore. We sought to identify their binding sites by comparing the effects of ginkgolides A, B and C and bilobalide on alpha 1, alpha 2, alpha 1 beta and alpha 2 beta GlyRs. Bilobalide sensitivity was drastically reduced by incorporation of the beta subunit. In contrast, the sensitivities to ginkgolides B and C were enhanced by beta subunit expression. However, ginkgolide A sensitivity was increased in the alpha 2 beta GlyR relative to the alpha 2 GlyR but not in the alpha 1 beta GlyR relative to the alpha 1 GlyR. We hypothesised that the subunit-specific differences were mediated by residue differences at the second transmembrane domain 2' and 6' pore-lining positions. The increased ginkgolide A sensitivity of the alpha 2 beta GlyR was transferred to the alpha 1 beta GlyR by the G2'A (alpha 1 to alpha 2 subunit) substitution. In addition, the alpha 1 subunit T6'F mutation abolished inhibition by all ginkgolides. As the ginkgolides share closely related structures, their molecular interactions with pore-lining residues were amenable to mutant cycle analysis. This identified an interaction between the variable R2 position of the ginkgolides and the 2' residues of both alpha 1 and beta subunits. These findings provide strong evidence for ginkgolides binding at the 2' pore-lining position.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Each G protein-coupled receptor recognizes only a distinct subset of the many structurally closely related G proteins expressed within a cell. How this selectively is achieved at a molecular level is not well understood, particularly since no specific point-to-point contact sites between a receptor and its cognate G protein(s) have been identified. In this study, we demonstrate that a 4-aa epitope on the m2 muscarinic acetylcholine receptor, a prototypical Gi/o-coupled receptor, can specifically recognize the C-terminal 5 aa of alpha subunits of the Gi/o protein family. The m2 receptor residues involved in this interaction are predicted to be located on one side of an alpha-helical receptor region present at the junction between the third intracellular loop and the sixth transmembrane domain. Coexpression studies with hybrid m2/m3 muscarinic receptors and mutant G-protein alpha q subunits showed that the receptor/G-protein contact site identified in this study is essential for coupling specificity and G-protein activation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

80.00% 80.00%

Publicador:

Resumo:

JUSTIFICATIVA E OBJETIVOS: Hipotermia intra-operatória é complicação frequente, favorecida por operação abdominal. A eficácia da associação dos métodos de aquecimento por condução e convecção na prevenção de hipotermia e seus efeitos no período de recuperação pós-operatória foram os objetivos deste estudo. MÉTODO: Quarenta e três pacientes de ambos os sexos de 18 a 88 anos de idade, submetidos à laparotomia xifopúbica sob anestesia geral e monitorização da temperatura esofágica, foram distribuídos de modo aleatório em dois grupos de aquecimento: COND (n = 24), com colchão de circulação de água a 37°C no dorso e COND + CONV (n = 19), com a mesma condição associada à manta de ar aquecido a 42°C sobre o tórax e membros superiores. Analisados peso, sexo, idade, duração da operação e anestesia, temperaturas na indução anestésica (Mi), horas consecutiva (M1, M2), final da operação (Mfo) e anestesia (Mfa), entrada (Me-REC) e saída (Ms-REC) da recuperação pós-anestésica (SRPA), além das incidências de tremores e queixas de frio no pós-operatório. RESULTADOS: Os grupos foram semelhantes em todas as variáveis analisadas, exceto nas temperaturas em M2, M3, M4, Mfo e Mfa. O grupo COND reduziu a temperatura a partir da segunda hora da indução anestésica, mas o grupo COND + CONV só na quarta hora. Em COND, observou-se hipotermia na entrada e saída da SRPA. CONCLUSÕES: Associar métodos de aquecimento retardou a instalação e diminui a intensidade da hipotermia intra-operatória, mas não reduziu a incidência das queixas de frio e tremores.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O objetivo deste estudo foi analisar o equilíbrio muscular dos flexores e extensores (RFE) de joelho ao longo de uma temporada de treinamento em jogadores de futebol categoria sub-20. Fizeram parte da amostra 15 sujeitos pertencentes à equipe sub-20 da Associação Atlética Ponte Preta de Campinas. Os atletas participaram de um macrociclo de preparação (MP) de 29 semanas, composto por período preparatório e competitivo que foram divididos em quatro mesociclos: etapa geral (M1), etapa especial (M2), etapa pré-competitiva (M3) e etapa competitiva (M4). A RFE de ambos os membros foi determinada em dinamômetro isocinético utilizando o pico de torque (PT) obtido em três séries consecutivas de cinco repetições com velocidade de 60º/s. Avaliação isocinética foi realizada em quatro momentos ao longo do MP, sempre ao final de cada mesociclo (M1, M2, M3 e M4). Para análise estatística, foi empregado teste Friedman de medidas repetidas, seguida do teste de Wilcoxon e teste U de Mann-Whitney, com nível de significância de p<0,05. O PT nos músculos flexores de joelho, em ambos os membros, no M2 e M3 foram superiores aos observados em M1 e M4. O PT dos extensores de joelho em M1 foi significantemente inferior aos demais momentos do estudo (M2, M3 e M4), em ambos os membros. A RFE, em ambos os membros, foi inferior em M1 quando comparado a M2 e M3. A comparação da RFE entre os membros não revelou diferenças significantes em nenhum dos momentos do estudo (M1, M2, M3 e M4). Os resultados encontrados na presente investigação indicaram existência de alterações na magnitude da RFE, porém dentro da normalidade, e, manutenção da proporcionalidade entre os membros ao longo do MP. Esses resultados sugerem que não existem períodos sensíveis para a ocorrência de lesões em virtude de desequilíbrios musculares ao longo do MP em jogadores de futebol da categoria sub-20.