831 resultados para Low alloy steel
Resumo:
The aim of the present paper is to study the relationship between the fracture modes in hydrogen-assisted cracking (HAC) in microalloied steel and the emission of acoustic signals during the fracturing process. For this reason, a flux-cored arc weld (FCAW) was used in a high-strength low-alloy steel. The consumable used were the commercially available AWS E120T5-K4 and had a diameter of 1.6 mm. Two different shielding gases were used (CO2 and CO2+5% H2) to obtain complete phenomenon characterization. The implant test was applied with three levels of restriction stresses. An acoustic emission measurement system (AEMS) was coupled to the implant test apparatus. The output signal from the acoustic emission sensor was passed through an electronic amplifier and processed by a root mean square (RMS) voltage converter. Fracture surfaces were examined by scanning electron microscopy (SEM) and image analysis. Fracture modes were related with the intensity, the energy and the number of the peaks of the acoustic emission signal. The shielding gas CO2+5% H2 proved to be very useful in the experiments. Basically, three different fracture modes were identified in terms of fracture appearance: microvoid coalescence (MVC), intergranular (IG) and quasi-cleavage (QC). The results show that each mode of fracture presents a characteristic acoustic signal.
Resumo:
Mode of access: Internet.
Resumo:
"Materials Central, Contract no. AF 33(616)-5878, Project no. 7351."
Resumo:
Pin on disc wear machines were used to study the boundary lubricated friction and wear of AISI 52100 steel sliding partners. Boundary conditions were obtained by using speed and load combinations which resulted in friction coefficients in excess of 0.1. Lubrication was achieved using zero, 15 and 1000 ppm concentrations of an organic dimeric acid additive in a hydrocarbon base stock. Experiments were performed for sliding speeds of 0.2, 0.35 and 0.5 m/s for a range of loads up to 220 N. Wear rate, frictional force and pin temperature were continually monitored throughout tests and where possible complementary methods of measurement were used to improve accuracy. A number of analytical techniques were used to examine wear surfaces, debris and lubricants, namely: Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES), Powder X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), optical microscopy, Back scattered Electron Detection (BSED) and several metallographic techniques. Friction forces and wear rates were found to vary linearly with load for any given combination of speed and additive concentration. The additive itself was found to act as a surface oxidation inhibitor and as a lubricity enhancer, particularly in the case of the higher (1000 ppm) concentration. Wear was found to be due to a mild oxidational mechanism at low additive concentrations and a more severe metallic mechanism at higher concentrations with evidence of metallic delamination in the latter case. Scuffing loads were found to increase with increasing additive concentration and decrease with increasing speed as would be predicted by classical models of additive behaviour as an organo-metallic soap film. Heat flow considerations tended to suggest that surface temperature was not the overriding controlling factor in oxidational wear and a model is proposed which suggests oxygen concentration in the lubricant is the controlling factor in oxide growth and wear.
Resumo:
A pin on disc wear machine has been used to study the oxidational wear of low alloy steel in a series of experiments which were carried out under dry wear sliding conditions at range of loads from 11.28 to 49.05 N and three sliding speeds of 2 m/s, 3.5 m/s and 5 m/s, in atmosphere of air, Ar, CO2, 100% O2, 20% O2-80% Ar and 2% O2-98% Ar. Also, the experiments were conducted to study frictional force, surface and contact temperatures and surface parameters of the wearing pins. The wear debris was examined using x-ray diffraction technique for the identification of compounds produced by the wear process. Scanning electron microscopy was employed to study the topographical features of worn pins and to measure the thickness of the oxide films. Microhardness tests were carried out to investigate the influence of the sub-surface microhardness in tribological conditions. Under all loads, speeds and atmospheres parabolic oxidation growth was observed on worn surfaces, although such growth is dependent on the concentration of oxygen in the atmospheres employed. These atmospheres are shown to influence wear rate and coefficient of friction with change in applied load. The nature of the atmosphere also has influence on surface and contact temperatures as determined from heat flow analysis. Unlubricated wear debris was found to be a mixture of αFe2O3, Fe3O4 and FeO oxide. A model has been proposed for tribo-oxide growth demonstrating the importance of diffusion rate and oxygen partial pressure, in the oxidation processes and thus in determination of wear rates.
Resumo:
High strength low alloy steels have been shown to be adversely affected by the existence of regions of poor impact toughness within the heat affected zone (HAZ) produced during multipass welding. One of these regions is the intercritically reheated coarse grained HAZ or intercritical zone. Since this region is generally narrow and discontinuous, of the order of 0.5 mm in width, weld simulators are often employed to produce a larger volume of uniform microstructure suitable for toughness assessment. The steel usedfor this study was a commercial quenched and tempered steel of 450 MN m -2 yield strength. Specimen blanks were subjected to a simulated welding cycle to produce a coarse grained structure of upper bainite during the first thermal cycle, followed by a second thermal cycle where the peak temperature T p2 was controlled. Charpy tests carried out for T p2 values in the range 650-850°C showed low toughness for T p2 values between 760 and 790°C, in the intercritical regime. Microstructural investigation of the development of grain boundary martensite-retained austenite (MA) phase has been coupled with image analysis to measure the volume fraction of MAformed. Most of the MA constituent appears at the prior austenite grain boundaries during intercritical heating, resulting in a 'necklace' appearance. For values of T p2 greater than 790°C the necklace appearance is lost and the second phase areas are observed throughout the structure. Concurrent with this is the development of the fine grained, predominantly ferritic structure that is associated with the improvement in toughness. At this stage the microstructure is transforming from the intercritical regime structure to the supercritically reheated coarse grained HAZ structure. The toughness improvement occurs even though the MA phase is still present, suggesting that the embrittlement is associated with the presence of a connected grain boundary network of the MA phase. The nature of the second phase particles can be controlled by the cooling rate during the second cycle and variesfrom MA phase at high cooling rates to a pearlitic structure at low cooling rates. The lowest toughness of the intercritical zone is observed only when MA phase is present. The reason suggested for this is that only the MA particles debond readily, a number of debonded particles in close proximity providing sufficient stress concentration to initiate local cleavage. © 1993 The Institute of Materials.
Resumo:
The Tandem-GMAW method is the latest development as the consequences of improvements in the welding methods. The twin-wire and then the Tandem-method with the separate power sources has got a remarkable place in the welding of many types of materials with different joint types. The biggest advantage of Tandem welding method is the flexibility of choosing both the electrodes of different types from each other according to the type of the parent material. This is possible because of the feasibility of setting the separate welding parameters for both the wires. In this thesis work the effect of the variation in three parameters on the weld bead in Tandem-GMA welding method is studied. Theses three parameters are the wire feed rate in the slave wire, the wire feed rate in the master wire and the voltage difference in both the wires. The results are then compared to study the behaviour of the weld bead with the change in these parameters.
Resumo:
This work measured the effect of milling parameters on the surface integrity of low-carbon alloy steel. The Variance Analysis showed that only depth of cut did not influence on the workpiece roughness and the Pearson's Coefficient indicated that cutting speed was more influent than tool feed. All cutting parameters introduced tensile residual stress in workpiece surface. The chip formation mechanism depended specially on cutting speed and influenced on the roughness and residual stress of workpiece.
Resumo:
This work presents a model for the magnetic Barkhausen jump in low carbon content steels. The outcomes of the model evidence that the Barkhausen jump height depends on the coercive field of the pinning site and on the mean free path of the domain wall between pinning sites. These results are used to deduce the influence of the microstructural features and of the magnetizing parameters on the amplitude and duration of the Barkhausen jumps. In particular, a theoretical expression, establishing the dependence of the Barkbausen jump height on the carbon content and grain size, is obtained. The model also reveals the dependence of the Barkhausen jump on the applied frequency and amplitude. Theoretical and experimental results are presented and compared, being in good agreement. (C) 2008 American Institute of Physics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The electrochemical behaviour of cold-rolled low carbon steel was studied on both active and passive potential regions in borate buffer solutions with and without the addition of sodium citrate (NaCit). In the active region anodic charges increased significantly and RCT values decreased with citrate, due to the formation of soluble complexes. In the passive potential region the film formed at +0.4 V in borate buffer solution with and without 0.010 M NaCit is probably enriched by Fe3O4 oxide, while films formed at +0.8 V are probably enriched by gamma-Fe2O3. The equivalent circuit [R-s(R(CT)Q)] fitted all experimental impedance data. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The microstructure evolution and mechanical behavior during large strain of a 0.16%C-Mn steel has been investigated by warm torsion tests. These experiments were carried out at 685°C at equivalent strain rate of 0.1 s . The initial microstructure composed of a martensite matrix with uniformly dispersed fine cementite particles was attained by quenching and tempering. The microstructure evolution during tempering and straining was performed through interrupted tests. As the material was reheated to testing temperature, well-defined cell structure was created and subgrains within lath martensite were observed by TEM; strong recovery took place, decreasing the dislocation density. After 1 hour at the test temperature and without straining, EBSD technique showed the formation of new grains. The flow stress curves measured had a peculiar shape: rapid work hardening to a hump, followed by an extensive flow-softening region. 65% of the boundaries observed in the sample strained to ε = 1.0 were high angle grain boundaries. After straining to ε = 5.0, average ferrite grain size close to 1.5 μm was found, suggesting that dynamic recrystallization took place. Also, two sets of cementite particles were observed: large particles aligned with straining direction and smaller particles more uniformly dispersed. The fragmentation or grain subdivision that occurred during reheating and tempering time was essential for the formation of ultrafine grained microstructure.