884 resultados para Lost to follow-up
Resumo:
It is known that patients may cease participating in a longitudinal study and become lost to follow-up. The objective of this article is to present a Bayesian model to estimate the malaria transition probabilities considering individuals lost to follow-up. We consider a homogeneous population, and it is assumed that the considered period of time is small enough to avoid two or more transitions from one state of health to another. The proposed model is based on a Gibbs sampling algorithm that uses information of lost to follow-up at the end of the longitudinal study. To simulate the unknown number of individuals with positive and negative states of malaria at the end of the study and lost to follow-up, two latent variables were introduced in the model. We used a real data set and a simulated data to illustrate the application of the methodology. The proposed model showed a good fit to these data sets, and the algorithm did not show problems of convergence or lack of identifiability. We conclude that the proposed model is a good alternative to estimate probabilities of transitions from one state of health to the other in studies with low adherence to follow-up.
Resumo:
BACKGROUND: The retention of patients in antiretroviral therapy (ART) programmes is an important issue in resource-limited settings. Loss to follow up can be substantial, but it is unclear what the outcomes are in patients who are lost to programmes. METHODS AND FINDINGS: We searched the PubMed, EMBASE, Latin American and Caribbean Health Sciences Literature (LILACS), Indian Medlars Centre (IndMed) and African Index Medicus (AIM) databases and the abstracts of three conferences for studies that traced patients lost to follow up to ascertain their vital status. Main outcomes were the proportion of patients traced, the proportion found to be alive and the proportion that had died. Where available, we also examined the reasons why some patients could not be traced, why patients found to be alive did not return to the clinic, and the causes of death. We combined mortality data from several studies using random-effects meta-analysis. Seventeen studies were eligible. All were from sub-Saharan Africa, except one study from India, and none were conducted in children. A total of 6420 patients (range 44 to 1343 patients) were included. Patients were traced using telephone calls, home visits and through social networks. Overall the vital status of 4021 patients could be ascertained (63%, range across studies: 45% to 86%); 1602 patients had died. The combined mortality was 40% (95% confidence interval 33%-48%), with substantial heterogeneity between studies (P<0.0001). Mortality in African programmes ranged from 12% to 87% of patients lost to follow-up. Mortality was inversely associated with the rate of loss to follow up in the programme: it declined from around 60% to 20% as the percentage of patients lost to the programme increased from 5% to 50%. Among patients not found, telephone numbers and addresses were frequently incorrect or missing. Common reasons for not returning to the clinic were transfer to another programme, financial problems and improving or deteriorating health. Causes of death were available for 47 deaths: 29 (62%) died of an AIDS defining illness. CONCLUSIONS: In ART programmes in resource-limited settings a substantial minority of adults lost to follow up cannot be traced, and among those traced 20% to 60% had died. Our findings have implications both for patient care and the monitoring and evaluation of programmes.
Resumo:
INTRODUCTION Patients who are lost to follow-up (LTFU) while on antiretroviral therapy (ART) pose challenges to the long-term success of ART programs. We describe the extent to which patients considered LTFU are misclassified as true disengagement from care when they are still alive on ART and explain reasons for ART discontinuation using our active tracing program to further improve ART retention programs and policies. METHODS We identified adult ART patients who missed clinic appointment by more than 3 weeks between January 2006 and December 2010, assuming that such patients would miss their doses of antiretroviral drugs. Patients considered LTFU who consented during ART registration were traced by phone or home visits; true ART status after tracing was documented. Reasons for ART discontinuation were also recorded for those who stopped ART. RESULTS Of the 4,560 suspected LTFU cases, 1,384 (30%) could not be traced. Of the 3,176 successfully traced patients, 952 (30%) were dead and 2,224 (70%) were alive, of which 2,183 (99.5%) started ART according to phone-based self-reports or physical verification during in-person interviews. Of those who started ART, 957 (44%) stopped ART and 1,226 (56%) reported still taking ART at the time of interview by sourcing drugs from another clinic, using alternative ART sources or making brief ART interruptions. Among 940 cases with reasons for ART discontinuations, failure to remember (17%), too weak/sick (12%), travel (46%), and lack of transport to the clinic (16%) were frequently cited; reasons differed by gender. CONCLUSION The LTFU category comprises sizeable proportions of patients still taking ART that may potentially bias retention estimates and misdirect resources at the clinic and national levels if not properly accounted for. Clinics should consider further decentralization efforts, increasing drug allocations for frequent travels, and improving communication on patient transfers between clinics to increase retention and adherence.
Resumo:
OBJECTIVES: Treatment as prevention depends on retaining HIV-infected patients in care. We investigated the effect on HIV transmission of bringing patients lost to follow up (LTFU) back into care. DESIGN: Mathematical model. METHODS: Stochastic mathematical model of cohorts of 1000 HIV-infected patients on antiretroviral therapy (ART), based on data from two clinics in Lilongwe, Malawi. We calculated cohort viral load (CVL; sum of individual mean viral loads each year) and used a mathematical relationship between viral load and transmission probability to estimate the number of new HIV infections. We simulated four scenarios: 'no LTFU' (all patients stay in care); 'no tracing' (patients LTFU are not traced); 'immediate tracing' (after missed clinic appointment); and, 'delayed tracing' (after six months). RESULTS: About 440 of 1000 patients were LTFU over five years. CVL (million copies/ml per 1000 patients) were 3.7 (95% prediction interval [PrI] 2.9-4.9) for no LTFU, 8.6 (95% PrI 7.3-10.0) for no tracing, 7.7 (95% PrI 6.2-9.1) for immediate, and 8.0 (95% PrI 6.7-9.5) for delayed tracing. Comparing no LTFU with no tracing the number of new infections increased from 33 (95% PrI 29-38) to 54 (95% PrI 47-60) per 1000 patients. Immediate tracing prevented 3.6 (95% PrI -3.3-12.8) and delayed tracing 2.5 (95% PrI -5.8-11.1) new infections per 1000. Immediate tracing was more efficient than delayed tracing: 116 and to 142 tracing efforts, respectively, were needed to prevent one new infection. CONCLUSION: Tracing of patients LTFU enhances the preventive effect of ART, but the number of transmissions prevented is small.
Resumo:
Evaluation of antiretroviral treatment (ART) programmes in sub-Saharan Africa is difficult because many patients are lost to follow-up. Outcomes in these patients are generally unknown but studies tracing patients have shown mortality to be high. We adjusted programme-level mortality in the first year of antiretroviral treatment (ART) for excess mortality in patients lost to follow-up.
Resumo:
Background The World Health Organization estimates that in sub-Saharan Africa about 4 million HIV-infected patients had started antiretroviral therapy (ART) by the end of 2008. Loss of patients to follow-up and care is an important problem for treatment programmes in this region. As mortality is high in these patients compared to patients remaining in care, ART programmes with high rates of loss to follow-up may substantially underestimate mortality of all patients starting ART. Methods and Findings We developed a nomogram to correct mortality estimates for loss to follow-up, based on the fact that mortality of all patients starting ART in a treatment programme is a weighted average of mortality among patients lost to follow-up and patients remaining in care. The nomogram gives a correction factor based on the percentage of patients lost to follow-up at a given point in time, and the estimated ratio of mortality between patients lost and not lost to follow-up. The mortality observed among patients retained in care is then multiplied by the correction factor to obtain an estimate of programme-level mortality that takes all deaths into account. A web calculator directly calculates the corrected, programme-level mortality with 95% confidence intervals (CIs). We applied the method to 11 ART programmes in sub-Saharan Africa. Patients retained in care had a mortality at 1 year of 1.4% to 12.0%; loss to follow-up ranged from 2.8% to 28.7%; and the correction factor from 1.2 to 8.0. The absolute difference between uncorrected and corrected mortality at 1 year ranged from 1.6% to 9.8%, and was above 5% in four programmes. The largest difference in mortality was in a programme with 28.7% of patients lost to follow-up at 1 year. Conclusions The amount of bias in mortality estimates can be large in ART programmes with substantial loss to follow-up. Programmes should routinely report mortality among patients retained in care and the proportion of patients lost. A simple nomogram can then be used to estimate mortality among all patients who started ART, for a range of plausible mortality rates among patients lost to follow-up.
Resumo:
Background Loss to follow-up (LTFU) is common in antiretroviral therapy (ART) programmes. Mortality is a competing risk (CR) for LTFU; however, it is often overlooked in cohort analyses. We examined how the CR of death affected LTFU estimates in Zambia and Switzerland. Methods and Findings HIV-infected patients aged ≥18 years who started ART 2004–2008 in observational cohorts in Zambia and Switzerland were included. We compared standard Kaplan-Meier curves with CR cumulative incidence. We calculated hazard ratios for LTFU across CD4 cell count strata using cause-specific Cox models, or Fine and Gray subdistribution models, adjusting for age, gender, body mass index and clinical stage. 89,339 patients from Zambia and 1,860 patients from Switzerland were included. 12,237 patients (13.7%) in Zambia and 129 patients (6.9%) in Switzerland were LTFU and 8,498 (9.5%) and 29 patients (1.6%), respectively, died. In Zambia, the probability of LTFU was overestimated in Kaplan-Meier curves: estimates at 3.5 years were 29.3% for patients starting ART with CD4 cells <100 cells/µl and 15.4% among patients starting with ≥350 cells/µL. The estimates from CR cumulative incidence were 22.9% and 13.6%, respectively. Little difference was found between naïve and CR analyses in Switzerland since only few patients died. The results from Cox and Fine and Gray models were similar: in Zambia the risk of loss to follow-up and death increased with decreasing CD4 counts at the start of ART, whereas in Switzerland there was a trend in the opposite direction, with patients with higher CD4 cell counts more likely to be lost to follow-up. Conclusions In ART programmes in low-income settings the competing risk of death can substantially bias standard analyses of LTFU. The CD4 cell count and other prognostic factors may be differentially associated with LTFU in low-income and high-income settings.
Resumo:
OBJECTIVE: To describe the electronic medical databases used in antiretroviral therapy (ART) programmes in lower-income countries and assess the measures such programmes employ to maintain and improve data quality and reduce the loss of patients to follow-up. METHODS: In 15 countries of Africa, South America and Asia, a survey was conducted from December 2006 to February 2007 on the use of electronic medical record systems in ART programmes. Patients enrolled in the sites at the time of the survey but not seen during the previous 12 months were considered lost to follow-up. The quality of the data was assessed by computing the percentage of missing key variables (age, sex, clinical stage of HIV infection, CD4+ lymphocyte count and year of ART initiation). Associations between site characteristics (such as number of staff members dedicated to data management), measures to reduce loss to follow-up (such as the presence of staff dedicated to tracing patients) and data quality and loss to follow-up were analysed using multivariate logit models. FINDINGS: Twenty-one sites that together provided ART to 50 060 patients were included (median number of patients per site: 1000; interquartile range, IQR: 72-19 320). Eighteen sites (86%) used an electronic database for medical record-keeping; 15 (83%) such sites relied on software intended for personal or small business use. The median percentage of missing data for key variables per site was 10.9% (IQR: 2.0-18.9%) and declined with training in data management (odds ratio, OR: 0.58; 95% confidence interval, CI: 0.37-0.90) and weekly hours spent by a clerk on the database per 100 patients on ART (OR: 0.95; 95% CI: 0.90-0.99). About 10 weekly hours per 100 patients on ART were required to reduce missing data for key variables to below 10%. The median percentage of patients lost to follow-up 1 year after starting ART was 8.5% (IQR: 4.2-19.7%). Strategies to reduce loss to follow-up included outreach teams, community-based organizations and checking death registry data. Implementation of all three strategies substantially reduced losses to follow-up (OR: 0.17; 95% CI: 0.15-0.20). CONCLUSION: The quality of the data collected and the retention of patients in ART treatment programmes are unsatisfactory for many sites involved in the scale-up of ART in resource-limited settings, mainly because of insufficient staff trained to manage data and trace patients lost to follow-up.
Resumo:
BACKGROUND Survival after diagnosis is a fundamental concern in cancer epidemiology. In resource-rich settings, ambient clinical databases, municipal data and cancer registries make survival estimation in real-world populations relatively straightforward. In resource-poor settings, given the deficiencies in a variety of health-related data systems, it is less clear how well we can determine cancer survival from ambient data. METHODS We addressed this issue in sub-Saharan Africa for Kaposi's sarcoma (KS), a cancer for which incidence has exploded with the HIV epidemic but for which survival in the region may be changing with the recent advent of antiretroviral therapy (ART). From 33 primary care HIV Clinics in Kenya, Uganda, Malawi, Nigeria and Cameroon participating in the International Epidemiologic Databases to Evaluate AIDS (IeDEA) Consortia in 2009-2012, we identified 1328 adults with newly diagnosed KS. Patients were evaluated from KS diagnosis until death, transfer to another facility or database closure. RESULTS Nominally, 22% of patients were estimated to be dead by 2 years, but this estimate was clouded by 45% cumulative lost to follow-up with unknown vital status by 2 years. After adjustment for site and CD4 count, age <30 years and male sex were independently associated with becoming lost. CONCLUSIONS In this community-based sample of patients diagnosed with KS in sub-Saharan Africa, almost half became lost to follow-up by 2 years. This precluded accurate estimation of survival. Until we either generally strengthen data systems or implement cancer-specific enhancements (e.g., tracking of the lost) in the region, insights from cancer epidemiology will be limited.
Resumo:
Loss to follow-up (LTFU) is a common problem in many epidemiological studies. In antiretroviral treatment (ART) programs for patients with human immunodeficiency virus (HIV), mortality estimates can be biased if the LTFU mechanism is non-ignorable, that is, mortality differs between lost and retained patients. In this setting, routine procedures for handling missing data may lead to biased estimates. To appropriately deal with non-ignorable LTFU, explicit modeling of the missing data mechanism is needed. This can be based on additional outcome ascertainment for a sample of patients LTFU, for example, through linkage to national registries or through survey-based methods. In this paper, we demonstrate how this additional information can be used to construct estimators based on inverse probability weights (IPW) or multiple imputation. We use simulations to contrast the performance of the proposed estimators with methods widely used in HIV cohort research for dealing with missing data. The practical implications of our approach are illustrated using South African ART data, which are partially linkable to South African national vital registration data. Our results demonstrate that while IPWs and proper imputation procedures can be easily constructed from additional outcome ascertainment to obtain valid overall estimates, neglecting non-ignorable LTFU can result in substantial bias. We believe the proposed estimators are readily applicable to a growing number of studies where LTFU is appreciable, but additional outcome data are available through linkage or surveys of patients LTFU. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
This study includes an exhaustive review of the literature related to universal newborn hearing screening and loss to follow-up. It examines refer and follow-up rates in Missouri and highlights three successful newborn hearing screening programs under the same audiologic management.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Spanish version available