946 resultados para Log-Gabor Filter


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays, authentication studies for paintings require a multidisciplinary approach, based on the contribution of visual features analysis but also on characterizations of materials and techniques. Moreover, it is important that the assessment of the authorship of a painting is supported by technical studies of a selected number of original artworks that cover the entire career of an artist. This dissertation is concerned about the work of modernist painter Amadeo de Souza-Cardoso. It is divided in three parts. In the first part, we propose a tool based on image processing that combines information obtained by brushstroke and materials analysis. The resulting tool provides qualitative and quantitative evaluation of the authorship of the paintings; the quantitative element is particularly relevant, as it could be crucial in solving authorship controversies, such as judicial disputes. The brushstroke analysis was performed by combining two algorithms for feature detection, namely Gabor filter and Scale Invariant Feature Transform. Thanks to this combination (and to the use of the Bag-of-Features model), the proposed method shows an accuracy higher than 90% in distinguishing between images of Amadeo’s paintings and images of artworks by other contemporary artists. For the molecular analysis, we implemented a semi-automatic system that uses hyperspectral imaging and elemental analysis. The system provides as output an image that depicts the mapping of the pigments present, together with the areas made using materials not coherent with Amadeo’s palette, if any. This visual output is a simple and effective way of assessing the results of the system. The tool proposed based on the combination of brushstroke and molecular information was tested in twelve paintings obtaining promising results. The second part of the thesis presents a systematic study of four selected paintings made by Amadeo in 1917. Although untitled, three of these paintings are commonly known as BRUT, Entrada and Coty; they are considered as his most successful and genuine works. The materials and techniques of these artworks have never been studied before. The paintings were studied with a multi-analytical approach using micro-Energy Dispersive X-ray Fluorescence spectroscopy, micro-Infrared and Raman Spectroscopy, micro-Spectrofluorimetry and Scanning Electron Microscopy. The characterization of Amadeo’s materials and techniques used on his last paintings, as well as the investigation of some of the conservation problems that affect these paintings, is essential to enrich the knowledge on this artist. Moreover, the study of the materials in the four paintings reveals commonalities between the paintings BRUT and Entrada. This observation is supported also by the analysis of the elements present in a photograph of a collage (conserved at the Art Library of the Calouste Gulbenkian Foundation), the only remaining evidence of a supposed maquete of these paintings. The final part of the thesis describes the application of the image processing tools developed in the first part of the thesis on a set of case studies; this experience demonstrates the potential of the tool to support painting analysis and authentication studies. The brushstroke analysis was used as additional analysis on the evaluation process of four paintings attributed to Amadeo, and the system based on hyperspectral analysis was applied on the painting dated 1917. The case studies therefore serve as a bridge between the first two parts of the dissertation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a novel image classification scheme for benthic coral reef images that can be applied to both single image and composite mosaic datasets. The proposed method can be configured to the characteristics (e.g., the size of the dataset, number of classes, resolution of the samples, color information availability, class types, etc.) of individual datasets. The proposed method uses completed local binary pattern (CLBP), grey level co-occurrence matrix (GLCM), Gabor filter response, and opponent angle and hue channel color histograms as feature descriptors. For classification, either k-nearest neighbor (KNN), neural network (NN), support vector machine (SVM) or probability density weighted mean distance (PDWMD) is used. The combination of features and classifiers that attains the best results is presented together with the guidelines for selection. The accuracy and efficiency of our proposed method are compared with other state-of-the-art techniques using three benthic and three texture datasets. The proposed method achieves the highest overall classification accuracy of any of the tested methods and has moderate execution time. Finally, the proposed classification scheme is applied to a large-scale image mosaic of the Red Sea to create a completely classified thematic map of the reef benthos

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Texture image analysis is an important field of investigation that has attracted the attention from computer vision community in the last decades. In this paper, a novel approach for texture image analysis is proposed by using a combination of graph theory and partially self-avoiding deterministic walks. From the image, we build a regular graph where each vertex represents a pixel and it is connected to neighboring pixels (pixels whose spatial distance is less than a given radius). Transformations on the regular graph are applied to emphasize different image features. To characterize the transformed graphs, partially self-avoiding deterministic walks are performed to compose the feature vector. Experimental results on three databases indicate that the proposed method significantly improves correct classification rate compared to the state-of-the-art, e.g. from 89.37% (original tourist walk) to 94.32% on the Brodatz database, from 84.86% (Gabor filter) to 85.07% on the Vistex database and from 92.60% (original tourist walk) to 98.00% on the plant leaves database. In view of these results, it is expected that this method could provide good results in other applications such as texture synthesis and texture segmentation. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper,we present a novel texture analysis method based on deterministic partially self-avoiding walks and fractal dimension theory. After finding the attractors of the image (set of pixels) using deterministic partially self-avoiding walks, they are dilated in direction to the whole image by adding pixels according to their relevance. The relevance of each pixel is calculated as the shortest path between the pixel and the pixels that belongs to the attractors. The proposed texture analysis method is demonstrated to outperform popular and state-of-the-art methods (e.g. Fourier descriptors, occurrence matrix, Gabor filter and local binary patterns) as well as deterministic tourist walk method and recent fractal methods using well-known texture image datasets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents a tool to support authentication studies of paintings attributed to the modernist Portuguese artist Amadeo de Souza-Cardoso (1887-1918). The strategy adopted was to quantify and combine the information extracted from the analysis of the brushstroke with information on the pigments present in the paintings. The brushstroke analysis was performed combining Gabor filter and Scale Invariant Feature Transform. Hyperspectral imaging and elemental analysis were used to compare the materials in the painting with those present in a database of oil paint tubes used by the artist. The outputs of the tool are a quantitative indicator for authenticity, and a mapping image that indicates the areas where materials not coherent with Amadeo's palette were detected, if any. This output is a simple and effective way of assessing the results of the system. The method was tested in twelve paintings obtaining promising results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The improvement of the dynamics of flexible manipulators like log cranes often requires advanced control methods. This thesis discusses the vibration problems in the cranes used in commercial forestry machines. Two control methods, adaptive filtering and semi-active damping, are presented. The adaptive filter uses a part of the lowest natural frequency of the crane as a filtering frequency. The payload estimation algorithm, filtering of control signal and algorithm for calculation of the lowest natural frequency of the crane are presented. The semi-active damping method is basedon pressure feedback. The pressure vibration, scaled with suitable gain, is added to the control signal of the valve of the lift cylinder to suppress vibrations. The adaptive filter cuts off high frequency impulses coming from the operatorand semi-active damping suppresses the crane?s oscillation, which is often caused by some external disturbance. In field tests performed on the crane, a correctly tuned (25 % tuning) adaptive filter reduced pressure vibration by 14-17 % and semi-active damping correspondingly by 21-43%. Applying of these methods require auxiliary transducers, installed in specific points in the crane, and electronically controlled directional control valves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A visual SLAM system has been implemented and optimised for real-time deployment on an AUV equipped with calibrated stereo cameras. The system incorporates a novel approach to landmark description in which landmarks are local sub maps that consist of a cloud of 3D points and their associated SIFT/SURF descriptors. Landmarks are also sparsely distributed which simplifies and accelerates data association and map updates. In addition to landmark-based localisation the system utilises visual odometry to estimate the pose of the vehicle in 6 degrees of freedom by identifying temporal matches between consecutive local sub maps and computing the motion. Both the extended Kalman filter and unscented Kalman filter have been considered for filtering the observations. The output of the filter is also smoothed using the Rauch-Tung-Striebel (RTS) method to obtain a better alignment of the sequence of local sub maps and to deliver a large-scale 3D acquisition of the surveyed area. Synthetic experiments have been performed using a simulation environment in which ray tracing is used to generate synthetic images for the stereo system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A visual SLAM system has been implemented and optimised for real-time deployment on an AUV equipped with calibrated stereo cameras. The system incorporates a novel approach to landmark description in which landmarks are local sub maps that consist of a cloud of 3D points and their associated SIFT/SURF descriptors. Landmarks are also sparsely distributed which simplifies and accelerates data association and map updates. In addition to landmark-based localisation the system utilises visual odometry to estimate the pose of the vehicle in 6 degrees of freedom by identifying temporal matches between consecutive local sub maps and computing the motion. Both the extended Kalman filter and unscented Kalman filter have been considered for filtering the observations. The output of the filter is also smoothed using the Rauch-Tung-Striebel (RTS) method to obtain a better alignment of the sequence of local sub maps and to deliver a large-scale 3D acquisition of the surveyed area. Synthetic experiments have been performed using a simulation environment in which ray tracing is used to generate synthetic images for the stereo system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-linear image registration is an important tool in many areas of image analysis. For instance, in morphometric studies of a population of brains, free-form deformations between images are analyzed to describe the structural anatomical variability. Such a simple deformation model is justified by the absence of an easy expressible prior about the shape changes. Applying the same algorithms used in brain imaging to orthopedic images might not be optimal due to the difference in the underlying prior on the inter-subject deformations. In particular, using an un-informed deformation prior often leads to local minima far from the expected solution. To improve robustness and promote anatomically meaningful deformations, we propose a locally affine and geometry-aware registration algorithm that automatically adapts to the data. We build upon the log-domain demons algorithm and introduce a new type of OBBTree-based regularization in the registration with a natural multiscale structure. The regularization model is composed of a hierarchy of locally affine transformations via their logarithms. Experiments on mandibles show improved accuracy and robustness when used to initialize the demons, and even similar performance by direct comparison to the demons, with a significantly lower degree of freedom. This closes the gap between polyaffine and non-rigid registration and opens new ways to statistically analyze the registration results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gestalt grouping rules imply a process or mechanism for grouping together local features of an object into a perceptual whole. Several psychophysical experiments have been interpreted as evidence for constrained interactions between nearby spatial filter elements and this has led to the hypothesis that element linking might be mediated by these interactions. A common tacit assumption is that these interactions result in response modulation which disturbs a local contrast code. We addressed this possibility by performing contrast discrimination experiments using two-dimensional arrays of multiple Gabor patches arranged either (i) vertically, (ii) in circles (coherent conditions), or (iii) randomly (incoherent condition), as well as for a single Gabor patch. In each condition, contrast increments were applied to either the entire test stimulus (experiment 1) or a single patch whose position was cued (experiment 2). In experiment 3, the texture stimuli were reduced to a single contour by displaying only the central vertical strip. Performance was better for the multiple-patch conditions than for the single-patch condition, but whether the multiple-patch stimulus was coherent or not had no systematic effect on the results in any of the experiments. We conclude that constrained local interactions do not interfere with a local contrast code for our suprathreshold stimuli, suggesting that, in general, this is not the way in which element linking is achieved. The possibility that interactions are involved in enhancing the detectability of contour elements at threshold remains unchallenged by our experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our scope in this thesis is to propose architectures of CNNs in such a way to model the early visual pathway, including the Lateral Geniculate Nucleus and the Horizontal Connectivity of the primary visual cortex. Moreover, we will show how cortically inspired architectures allow to perform contrast perceptual invariance as well as grouping and the emergence of visual percepts. Particularly, the LGN is modeled with a first layer l0 containing a single filter Ψ0 that pre-filters the image I. Since the RPs of the LGN cells can be modeled as a LoG, we expect to obtain a radially symmetric filter with a similar shape; to this end, we prove the rotational invariance of Ψ0 and we study the influence of this filter to the subsequent layer. Indeed, we compare the statistic distribution of the filters in the second layer l1 of our architecture with the statistic distribution of the RPs of V1 cells of a macaque. Then, we model the horizontal connectivity of V1 implementing a transition kernel K1 to the layer l1. In this setting, we study the vector fields and the association fields induced by the connectivity kernel K1. To this end, we first approximate the filters bank in l1 with a Gabor function and use the parameters just found to re-parameterize the kernel. Thanks to this step, the kernel is now re-parameterized into a sub-Riemmanian space R2 × S1. Now we are able to compare the vector and association fields induced by K1 with the models of the horizontal connectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To detect the presence of male DNA in vaginal samples collected from survivors of sexual violence and stored on filter paper. A pilot study was conducted to evaluate 10 vaginal samples spotted on sterile filter paper: 6 collected at random in April 2009 and 4 in October 2010. Time between sexual assault and sample collection was 4-48hours. After drying at room temperature, the samples were placed in a sterile envelope and stored for 2-3years until processing. DNA extraction was confirmed by polymerase chain reaction for human β-globin, and the presence of prostate-specific antigen (PSA) was quantified. The presence of the Y chromosome was detected using primers for sequences in the TSPY (Y7/Y8 and DYS14) and SRY genes. β-Globin was detected in all 10 samples, while 2 samples were positive for PSA. Half of the samples amplified the Y7/Y8 and DYS14 sequences of the TSPY gene and 30% amplified the SRY gene sequence of the Y chromosome. Four male samples and 1 female sample served as controls. Filter-paper spots stored for periods of up to 3years proved adequate for preserving genetic material from vaginal samples collected following sexual violence.