815 resultados para Little mouse
Resumo:
OBJECTIVE: To investigate a possible direct, growth hormone-releasing, hormone-independent action of a growth hormone secretagogue, GHRP-2, in pituitary somatotroph cells in the presence of inactive growth hormone-releasing hormone receptors. MATERIALS AND METHODS: The responses of serum growth hormone to acutely injected growth hormone-releasing P-2 in lit/litmice, which represent a model of GH deficiency arising frommutated growth hormone-releasing hormone-receptors, were compared to those observed in the heterozygous (lit/+) littermates and wild-type (+/+) C57BL/6J mice. RESULTS: After the administration of 10 mcg of growth hormone-releasing P-2 to lit/lit mice, a growth hormone release of 9.3 +/- 1.5 ng/ml was observed compared with 1.04 +/- 1.15 ng/ml in controls (p<0.001). In comparison, an intermediate growth hormone release of 34.5 +/- 9.7 ng/ml and a higher growth hormone release of 163 +/- 46 ng/ml were induced in the lit/+ mice and wild-type mice, respectively. Thus, GHRP-2 stimulated growth hormone in the lit/lit mice, and the release of growth hormone in vivo may be only partially dependent on growth hormone-releasing hormone. Additionally, the plasma leptin and ghrelin levels were evaluated in the lit/lit mice under basal and stimulated conditions. CONCLUSIONS: Here, we have demonstrated that lit/lit mice, which harbor a germline mutation in the Growth hormone-releasing hormone gene, maintain a limited but statistically significant growth hormone elevation after exogenous stimulation with GHRP-2. The present data probably reflect a direct, growth hormone-independent effect on Growth hormone S (ghrelin) stimulation in the remaining pituitary somatotrophs of little mice that is mediated by growth hormone S-R 1a.
Resumo:
OBJECTIVE: To investigate a possible direct, growth hormone-releasing, hormone-independent action of a growth hormone secretagogue, GHRP-2, in pituitary somatotroph cells in the presence of inactive growth hormonereleasing hormone receptors. MATERIALS AND METHODS: The responses of serum growth hormone to acutely injected growth hormone-releasing P-2 in lit/litmice, which represent a model of GH deficiency arising frommutated growth hormone-releasing hormonereceptors, were compared to those observed in the heterozygous (lit/+) littermates and wild-type (+/+) C57BL/6J mice. RESULTS: After the administration of 10 mcg of growth hormone-releasing P-2 to lit/lit mice, a growth hormone release of 9.3±1.5 ng/ml was observed compared with 1.04±1.15 ng/ml in controls (p<0.001). In comparison, an intermediate growth hormone release of 34.5±9.7 ng/ml and a higher growth hormone release of 163±46 ng/ml were induced in the lit/+ mice and wild-type mice, respectively. Thus, GHRP-2 stimulated growth hormone in the lit/lit mice, and the release of growth hormone in vivo may be only partially dependent on growth hormone-releasing hormone. Additionally, the plasma leptin and ghrelin levels were evaluated in the lit/lit mice under basal and stimulated conditions. CONCLUSIONS: Here, we have demonstrated that lit/lit mice, which harbor a germline mutation in the Growth hormone-releasing hormone gene, maintain a limited but statistically significant growth hormone elevation after exogenous stimulation with GHRP-2. The present data probably reflect a direct, growth hormone-independent effect on Growth hormone S (ghrelin) stimulation in the remaining pituitary somatotrophs of little mice that is mediated by growth hormone S-R 1a.
Resumo:
A la caída de la tarde, Little Mouse se dirige con su mamá a casa y de camino por el bosque encuentra a otros animales cuidando de sus crías y piensa lo importante que deben ser estos bebes para sus madres. Cuando llegan, Little Mouse le pregunta,inquieto a su madre '¿qué puedes hacer por mí?'. La respuesta es muy tranquilizadora para él.
Resumo:
JOHANN SEBASTIAN BACH Buss und Reu, St Matthew Passion Es ist vollbracht, St John Passion FRANZ JOSEPH HAYDN O luna lucente, Il Mondo della luna ROBERT SCHUMANN Gedichte der Königin Maria Stuart Abschied von Frankreich Nach der Geburt ihres Sohnes An die Königin Elisabeth Abschied von der Welt Gebet STEFAN WOLPE Simeini kahotam al libeha, Two Songs for Alto and Piano SRUL IRVING GLICK "...i never saw another butterfly... " To Olga Yes, That's The Way Things Are The Little Mouse On A Sunny Evening Narrative The Butterfly LEILA LUSTIG Wretched Highway WILLIAM BOLCOM The Actor George
Resumo:
Digital Image
Resumo:
Digital Image
Resumo:
Digital Image
Resumo:
Mode of access: Internet.
Resumo:
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder with loci on chromosome 9q34.12 (TSC1) and chromosome 16p13.3 (TSC2). Genes for both loci have been isolated and characterized. The promoters of both genes have not been characterized so far and little is known about the regulation of these genes. This study reports the characterization of the human TSC1 promoter region for the first time. We have identified a novel alternative isoform in the 5' untranslated region (UTR) of the TSC1 gene transcript involving exon 1. Alternative isoforms in the 5' UTR of the mouse Tsc1 gene transcript involving exon I and exon 2 have also been identified. We have identified three upstream open reading frames (uORFs) in the 5' UTR of the TSC1/Tsc1 gene. A comparative study of the 5' UTR of TSC1/Tsc1 gene has revealed that there is a high degree of similarity not only in the sequence but also in the splicing pattern of both human and mouse TSC1 genes. We have used PCR methodology to isolate approximately 1.6 kb genomic DNA 5' to the TSC1 cDNA. This sequence has directed a high level of expression of luciferase activity in both HeLa and HepG2 cells. Successive 5' and 3' deletion analysis has suggested that a -587 bp region, from position +77 to -510 from the transcription start site (TSS), contains the promoter activity. Interestingly, this region contains no consensus TATA box or CAAT box. However, a 521-bp fragment surrounding the TSS exhibits the characteristics of a CpG island which overlaps with the promoter region. The identification of the TSC1 promoter region will help in designing a suitable strategy to identify mutations in this region in patients who do not show any mutations in the coding regions. It will also help to study the regulation of the TSC1 gene and its role in tumorigenesis. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Interleukin-2 (IL-2) is an important mediator in the vertebrate immune system. IL-2 is a potent growth factor that mature T lymphocytes use as a proliferation signal and the production of IL-2 is crucial for the clonal expansion of antigen-specific T cells in the primary immune response. IL-2 driven proliferation is dependent on the interaction of the lymphokine with its cognate multichain receptor. IL-2 expression is induced only upon stimulation and transcriptional activation of the IL-2 gene relies extensively on the coordinate interaction of numerous inducible and constitutive trans-acting factors. Over the past several years, thousands of papers have been published regarding molecular and cellular aspects of IL-2 gene expression and IL-2 function. The vast majority of these reports describe work that has been carried out in vitro. However, considerably less is known about control of IL-2 gene expression and IL-2 function in vivo.
To gain new insight into the regulation of IL-2 gene expression in vivo, anatomical and developmental patterns of IL-2 gene expression in the mouse were established by employing in situ hybridization and immunohistochemical staining methodologies to tissue sections generated from normal mice and mutant animals in which T -cell development was perturbed. Results from these studies revealed several interesting aspects of IL-2 gene expression, such as (1) induction of IL-2 gene expression and protein synthesis in the thymus, the primary site of T-cell development in the body, (2) cell-type specificity of IL-2 gene expression in vivo, (3) participation of IL-2 in the extrathymic expansion of mature T cells in particular tissues, independent of an acute immune response to foreign antigen, (4) involvement of IL-2 in maintaining immunologic balance in the mucosal immune system, and (5) potential function of IL-2 in early events associated with hematopoiesis.
Extensive analysis of IL-2 mRNA accumulation and protein production in the murine thymus at various stages of development established the existence of two classes of intrathymic IL-2 producing cells. One class of intrathymic IL-2 producers was found exclusively in the fetal thymus. Cells belonging to this subset were restricted to the outermost region of the thymus. IL-2 expression in the fetal thymus was highly transient; a dramatic peak ofiL-2 mRNA accumulation was identified at day 14.5 of gestation and maximal IL-2 protein production was observed 12 hours later, after which both IL-2 mRNA and protein levels rapidly decreased. Significantly, the presence of IL-2 expressing cells in the day 14-15 fetal thymus was not contingent on the generation of T-cell receptor (TcR) positive cells. The second class of IL-2 producing cells was also detectable in the fetal thymus (cells found in this class represented a minority subset of IL-2 producers in the fetal thymus) but persist in the thymus during later stages of development and after birth. Intrathymic IL-2 producers in postnatal animals were located in the subcapsular region and cortex, indicating that these cells reside in the same areas where immature T cells are consigned. The frequency of IL-2 expressing cells in the postnatal thymus was extremely low, indicating that induction of IL-2 expression and protein synthesis are indicative of a rare activation event. Unlike the fetal class of intrathymic IL-2 producers, the presence of IL-2 producing cells in the postnatal thymus was dependent on to the generation of TcR+ cells. Subsequent examination of intrathymic IL-2 production in mutant postnatal mice unable to produce either αβ or γδ T cells showed that postnatal IL-2 producers in the thymus belong to both αβ and γδ lineages. Additionally, further studies indicated that IL-2 synthesis by immature αβ -T cells depends on the expression of bonafide TcR αβ-heterodimers. Taken altogether, IL-2 production in the postnatal thymus relies on the generation of αβ or γδ-TcR^+ cells and induction of IL-2 protein synthesis can be linked to an activation event mediated via the TcR.
With regard to tissue specificity of IL-2 gene expression in vivo, analysis of whole body sections obtained from normal neonatal mouse pups by in situ hybridization demonstrated that IL-2 mRNA^+ cells were found in both lymphoid and nonlymphoid tissues with which T cells are associated, such as the thymus (as described above), dermis and gut. Tissues devoid of IL-2 mRNA^+ cells included brain, heart, lung, liver, stomach, spine, spinal cord, kidney, and bladder. Additional analysis of isolated tissues taken from older animals revealed that IL-2 expression was undetectable in bone marrow and in nonactivated spleen and lymph nodes. Thus, it appears that extrathymic IL-2 expressing cells in nonimmunologically challenged animals are relegated to particular epidermal and epithelial tissues in which characterized subsets of T cells reside and thatinduction of IL-2 gene expression associated with these tissues may be a result of T-cell activation therein.
Based on the neonatal in situ hybridization results, a detailed investigation into possible induction of IL-2 expression resulting in IL-2 protein synthesis in the skin and gut revealed that IL-2 expression is induced in the epidermis and intestine and IL-2 protein is available to drive cell proliferation of resident cells and/or participate in immune function in these tissues. Pertaining to IL-2 expression in the skin, maximal IL-2 mRNA accumulation and protein production were observed when resident Vγ_3^+ T-cell populations were expanding. At this age, both IL-2 mRNA^+ cells and IL-2 protein production were intimately associated with hair follicles. Likewise, at this age a significant number of CD3ε^+ cells were also found in association with follicles. The colocalization of IL-2 expression and CD3ε^+ cells suggests that IL-2 expression is induced when T cells are in contact with hair follicles. In contrast, neither IL-2 mRNA nor IL-2 protein were readily detected once T-cell density in the skin reached steady-state proportions. At this point, T cells were no longer found associated with hair follicles but were evenly distributed throughout the epidermis. In addition, IL-2 expression in the skin was contingent upon the presence of mature T cells therein and induction of IL-2 protein synthesis in the skin did not depend on the expression of a specific TcR on resident T cells. These newly disclosed properties of IL-2 expression in the skin indicate that IL-2 may play an additional role in controlling mature T-cell proliferation by participating in the extrathymic expansion of T cells, particularly those associated with the epidermis.
Finally, regarding IL-2 expression and protein synthesis in the gut, IL-2 producing cells were found associated with the lamina propria of neonatal animals and gut-associated IL-2 production persisted throughout life. In older animals, the frequency of IL-2 producing cells in the small intestine was not identical to that in the large intestine and this difference may reflect regional specialization of the mucosal immune system in response to enteric antigen. Similar to other instances of IL-2 gene expression in vivo, a failure to generate mature T cells also led to an abrogation of IL-2 protein production in the gut. The presence of IL-2 producing cells in the neonatal gut suggested that these cells may be generated during fetal development. Examination of the fetal gut to determine the distribution of IL-2 producing cells therein indicated that there was a tenfold increase in the number of gut-associated IL-2 producers at day 20 of gestation compared to that observed four days earlier and there was little difference between the frequency of IL-2 producing cells in prenatal versus neonatal gut. The origin of these fetally-derived IL-2 producing cells is unclear. Prior to the immigration of IL-2 inducible cells to the fetal gut and/or induction of IL-2 expression therein, IL-2 protein was observed in the fetal liver and fetal omentum, as well as the fetal thymus. Considering that induction of IL-2 protein synthesis may be an indication of future functional capability, detection of IL-2 producing cells in the fetal liver and fetal omentum raises the possibility that IL-2 producing cells in the fetal gut may be extrathymic in origin and IL-2 producing cells in these fetal tissues may not belong solely to the T lineage. Overall, these results provide increased understanding of the nature of IL-2 producing cells in the gut and how the absence of IL-2 production therein and in fetal hematopoietic tissues can result in the acute pathology observed in IL-2 deficient animals.
Resumo:
Background: Due to the advances of high throughput technology and data-collection approaches, we are now in an unprecedented position to understand the evolution of organisms. Great efforts have characterized many individual genes responsible for the interspecies divergence, yet little is known about the genome-wide divergence at a higher level. Modules, serving as the building blocks and operational units of biological systems, provide more information than individual genes. Hence, the comparative analysis between species at the module level would shed more light on the mechanisms underlying the evolution of organisms than the traditional comparative genomics approaches. Results: We systematically identified the tissue-related modules using the iterative signature algorithm (ISA), and we detected 52 and 65 modules in the human and mouse genomes, respectively. The gene expression patterns indicate that all of these predicted modules have a high possibility of serving as real biological modules. In addition, we defined a novel quantity, "total constraint intensity,'' a proxy of multiple constraints (of co-regulated genes and tissues where the co-regulation occurs) on the evolution of genes in module context. We demonstrate that the evolutionary rate of a gene is negatively correlated with its total constraint intensity. Furthermore, there are modules coding the same essential biological processes, while their gene contents have diverged extensively between human and mouse. Conclusions: Our results suggest that unlike the composition of module, which exhibits a great difference between human and mouse, the functional organization of the corresponding modules may evolve in a more conservative manner. Most importantly, our findings imply that similar biological processes can be carried out by different sets of genes from human and mouse, therefore, the functional data of individual genes from mouse may not apply to human in certain occasions.
Resumo:
Pregnancy-Specific Glycoproteins (PSG) are the most abundant fetally expressed proteins in the maternal bloodstream at term. This multigene family are immunoglobulin superfamily members and are predominantly expressed in the syncytiotrophoblast of human placenta and in giant cells and spongiotrophoblast of rodent placenta. PSGs are encoded by seventeen genes in the mouse and ten genes in the human. Little is known about the function of this gene family, although they have been implicated in immune modulation and angiogenesis through the induction of cytokines such as IL-10 and TGFβ1 in monocytes, and more recently, have been shown to inhibit the platelet-fibrinogen interaction. I provide new information concerning the evolution of the murine Psg genomic locus structure and organisation, through the discovery of a recent gene inversion event of Psg22 within the major murine Psg cluster. In addition to this, I have performed an examination of the expression patterns of individual Psg genes in placental and non-placental tissues. This study centres on Psg22, which is the most abundant murine Psg transcript detected in the first half of pregnancy. A novel alternative splice variant transcript of Psg22 lacking the protein N1-domain was discovered, and similar to the full length isoform induces TGFβ1 in macrophage and monocytic cell lines. The identification of a bidirectional antisense long non-coding RNA transcript directly adjacent to Psg22 and its associated active local chromatin conformation, suggests an interesting epigenetic gene-specific regulatory mechanism that may be responsible for the high level of Psg22 expression relative to the other Psg family members upon trophoblast giant cell differentiation
Resumo:
The stratification and differentiation of the epidermis are known to involve the precise control of multiple signaling pathways. By contrast, little is known about the development of the mouse esophagus and forestomach, which are composed of a stratified squamous epithelium. Based on prior work in the skin, we hypothesized that bone morphogenetic protein (BMP) signaling is a central player. To test this hypothesis, we first used a BMP reporter mouse line harboring a BRE-lacZ allele, along with in situ hybridization to localize transcripts for BMP signaling components, including various antagonists. We then exploited a Shh-Cre allele that drives recombination in the embryonic foregut epithelium to generate gain- or loss-of-function models for the Bmpr1a (Alk3) receptor. In gain-of-function (Shh-Cre;Rosa26(CAG-loxpstoploxp-caBmprIa)) embryos, high levels of ectopic BMP signaling stall the transition from simple columnar to multilayered undifferentiated epithelium in the esophagus and forestomach. In loss-of-function experiments, conditional deletion of the BMP receptor in Shh-Cre;Bmpr1a(flox/flox) embryos allows the formation of a multilayered squamous epithelium but this fails to differentiate, as shown by the absence of expression of the suprabasal markers loricrin and involucrin. Together, these findings suggest multiple roles for BMP signaling in the developing esophagus and forestomach.
Resumo:
Interluekin-23 (IL-23) is a pro-inflammatory cytokine critical to the regulation of innate and adaptive immune responses. The main role for this cytokine is in the proliferation and differentiation of the IL-17 producing CD4 T helper cell, Th17. Virus infection deregulates IL-23 expression and function, but little is known about the mechanism behind this phenomena. Here, I demonstrate a reduction of Toll like receptor (TLR) ligand-induced IL-23 expression in lymphocytic choriomeningitis virus (LCMV)-infected bone marrow-derived dendritic cells (BMDCs), indicating that a function of these cells is disrupted during virus infection. I propose a mechanism of TLR ligand-induced IL-23 expression inhibition upon LCMV infection via the deactivation of p38, AP-1, and NF-κB. Further analysis revealed a direct relationship between LCMV infection with the IL-10 and SOCS3 expression. To understand IL-23 function, I characterized IL-23-induced JAK/STAT signalling pathway and IL-23 receptor expression on human CD4 T cells. My results demonstrate that IL-23 induces activation of p-JAK2, p-Tyk2, p-STAT1, p-STAT3, and p-STAT4 in CD4 T cells. For the first time I show that IL-23 alone induces the expression of its own receptor components, IL-12Rβ1 and IL-23Rα, in CD4 T cells. Blocking JAK2, STAT1, and STAT3 activation with specific inhibitors detrimentally effected expression of IL-23 receptor demonstrating that activation of JAK/STAT signalling is important for IL-23 receptor expression. I also addressed the effect of viral infection on IL-23 function and receptor expression in CD4 T cells using cells isolated from HIV positive individuals. These studies were based on earlier reports that the expression of IL-23 and the IL-23 receptor are impaired during HIV infection. I demonstrate that the phosphorylation of JAK2, STAT1, and STAT3 induced by IL-23, as well as IL-23 receptor expression are deregulated in CD4 T cells isolated from HIV positive individuals. This study has furthered the understanding of how the expression and function of IL-23 is regulated during viral infections.