995 resultados para Ligas de titânio zircônio


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to study a series of 11 different compositions of Ti-Zr binary alloys resistance to aggressive environment, i. e., their ability to keep their surface properties and mass when exposed to them as a way to evaluate their performance as biomaterials. The first stage was devoted to the fabrication of tablets from these alloys by Plasma-Skull casting method using a Discovery Plasma machine from EDG Equipamentos, Brazil. In a second stage, the chemical composition of each produced tablet was verified. In a third stage, the specimen were submitted to: as-cast microstructure analysis via optical and scanning electron microscopy (OM and SEM), x-ray dispersive system (EDS) chemical analysis via SEM, Vickers hardness tests for mechanical evaluation and corrosion resistence tests in a 0.9% NaCl solution to simulate exposition to human saliva monitored by open circuit potential and polarization curves. From the obtained results, it was possible to infer that specimens A1 (94,07 wt% Ti and 5,93% wt% Zr), A4 (77,81 wt % Ti and 22,19 wt % Zr) and A8 (27,83 wt% Ti and 72,17 wt% Zr), presented best performance regarding to corrosion resistance, homogeneity and hardness which are necessary issues for biomaterials to be applied as orthopedic and odontological prosthesis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Biopatologia Bucal - ICT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

à descrita a invenção de um método de modificação da superfície 5 de ligas de titânio empregando a oxidação anódica em ligas de Ti- 30Ta e Ti-7,5Mo para a obtenção de nanotubos perpendiculares ao substrato com diâmetro de 80-120 nm e comprimento de 100 nm-500 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Biopatologia Bucal - ICT

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A ligação dissimilar de ligas de alumínio a ligas de titânio tem elevado potencial para aplicações nas indústrias aeroespacial, automóvel e naval, devido à sua baixa razão peso/resistência mecânica. Contudo, soldar ligas de alumínio a ligas de titânio apresenta-se como um grande desafio, principalmente devido à formação de fases intermetálicas frágeis que têm um efeito negativo nas propriedades mecânicas da junta. Neste estudo, foram realizadas ligações dissimilares das ligas AA6082-T6 a Ti6Al4V, por Fricção Linear assistida por Corrente Eléctrica. Para a utilização de corrente eléctrica na Soldadura por Fricção Linear foram desenvolvidas, produzidas e testadas duas novas ferramentas. A estrutura da ligação foi analisada, por microscopia óptica e electrónica de varrimento. Controlando os parâmetros de soldadura foi possível obter soldaduras topo a topo e sobrepostas com um bom aspecto superficial e com continuidade metálica na interface. Nas ligações topo-a-topo observaram-se defeitos na raiz do cordão. As estruturas na zona soldada dependem fortemente da posição do pino em relação à interface. O uso da corrente eléctrica permitiu reduzir os defeitos na raiz, como vazios e falta de ligação na mesma, sem afectar as características metalúrgicas da interface. A utilização da corrente eléctrica permite aumentar a viscoplasticidade do material e facilitar a deformação plástica à volta do pino.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With advances in health care, has been na increase of demand for material that could replace the functions of the human body parts, thus evolved biomedic prosthesis which today are responsible for the constant improvement of the quality of life. The Titanium alloys are widely used as implants due to its properties, like high mechanical resistance, biocompatibility and corrosion resistance, and the addition alloying elements like Zirconium, may improve some of those properties. Such properties are related to the microstructure and consequently to the type of processing performed. The purpose of this dissertation was to characterize the experimental alloy Ti15Zr after route of processsing and heat treatment in order to extend the knowledge about this alloy. The latter has been abtained by fusion of pure metals in a arc melting furnace with an inert argon atmosphere. The material has been homogenized in a tube furnace at 950ºC for 24h and cold worked by swaging, after that, bars with 10 mm of diameter were obtained by the process of rotary forging. The samples were solubilized at 900º C for 2 hours and quenched in water. After that, 4 samples were submitted to the aging, at 400º C, 450º C, 500º C and 550º C. The microstructure and phase analysis was done by optical microscopy and X-rays diffraction (XRD), the mechanical characterization was carried out by microhardness test and finally, evaluation of corrosion resistance of the alloy by electrochemical tests. The XRD and the optical microscopy made it possible to analyze that the heat treatment influenced the phase shifting from α to α', and probably affected the alloy hardness, at the first aged sample at 500º Chas been a sudden increase in the value of hardness, probably by appearance of omega phase, unwanted phase to the medical application duo to great fragility, and finally ... (Complete abstract click electronic access below)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With advances in health care, has been na increase of demand for material that could replace the functions of the human body parts, thus evolved biomedic prosthesis which today are responsible for the constant improvement of the quality of life. The Titanium alloys are widely used as implants due to its properties, like high mechanical resistance, biocompatibility and corrosion resistance, and the addition alloying elements like Zirconium, may improve some of those properties. Such properties are related to the microstructure and consequently to the type of processing performed. The purpose of this dissertation was to characterize the experimental alloy Ti15Zr after route of processsing and heat treatment in order to extend the knowledge about this alloy. The latter has been abtained by fusion of pure metals in a arc melting furnace with an inert argon atmosphere. The material has been homogenized in a tube furnace at 950ºC for 24h and cold worked by swaging, after that, bars with 10 mm of diameter were obtained by the process of rotary forging. The samples were solubilized at 900º C for 2 hours and quenched in water. After that, 4 samples were submitted to the aging, at 400º C, 450º C, 500º C and 550º C. The microstructure and phase analysis was done by optical microscopy and X-rays diffraction (XRD), the mechanical characterization was carried out by microhardness test and finally, evaluation of corrosion resistance of the alloy by electrochemical tests. The XRD and the optical microscopy made it possible to analyze that the heat treatment influenced the phase shifting from α to α', and probably affected the alloy hardness, at the first aged sample at 500º Chas been a sudden increase in the value of hardness, probably by appearance of omega phase, unwanted phase to the medical application duo to great fragility, and finally ... (Complete abstract click electronic access below)