889 resultados para Ligas cobalto-cromo
Resumo:
The cobalt-chromium alloy is extensively used in the Odontology for the confection of metallic scaffolding in partial removable denture. During the last few years, it has been reported an increasing number of premature imperfections, with a few months of prosthesis use. The manufacture of these components is made in prosthetic laboratories and normally involves recasting, using parts of casting alloy and parts of virgin alloy. Therefore, the objective of the present study was to analyze the mechanical properties of a commercial cobalt-chromium alloy of odontological use after successive recasting, searching information to guide the dental prosthesis laboratories in the correct manipulation of the cobalt-chromium alloy in the process of casting and the possible limits of recasting in the mechanical properties of this material. Seven sample groups were confectioned, each one containing five test bodies, divided in the following way: G1: casting only with virgin alloy; G2: casting with 50% of the alloy of the G1 + 50% of virgin alloy; G3: casting with 50% of the alloy of the G2 + 50% of virgin alloy; G4: casting with 50% of the alloy of the G3 + 50% of virgin alloy; G5: 50% of alloy of the G4 + 50% of virgin alloy; G6: 50% of alloy of the G5 + 50% of virgin alloy and finally the G7, only with recasting alloy. The modifications in the mechanical behavior of the alloy were evaluated. Moreover, it was carried the micro structural characterization of the material by optic and electronic scanning microscopy, and X ray diffraction.and fluorescence looking into the correlatation of the mechanical alterations with structural modifications of the material caused by successive recasting process. Generally the results showed alterations in the fracture energy of the alloy after successive recasting, resulting mainly of the increasing presence of pores and large voids, characteristic of the casting material. Thus, the interpretation of the results showed that the material did not reveal significant differences with respect to the tensile strength or elastic limit, as a function of successive recasting. The elastic modulus increased from the third recasting cycle on, indicating that the material can be recast only twice. The fracture energy of the material decreased, as the number of recasting cycles increased. With respect to the microhardness, the statistical analyses showedno significant differences. Electronic scanning microscopy revealed the presence of imperfections and defects, resulting of the recasting process. X ray diffraction and fluorescence did not show alterations in the composition of the alloy or the formation of crystalline phases between the analyzed groups. The optical micrographs showed an increasing number of voids and porosity as the material was recast. Therefore, the general conclusion of this study is that the successive recasting of of Co-Cr alloys affects the mechanical properties of the material, consequently leading to the failure of the prosthetic work. Based on the results, the best recommendadition is that the use of the material should be limited to two recasting cycles
Resumo:
The cobalt-chromium alloy is extensively used in the Odontology for the confection of metallic scaffolding in partial removable denture. During the last few years, it has been reported an increasing number of premature imperfections, with a few months of prosthesis use. The manufacture of these components is made in prosthetic laboratories and normally involves recasting, using parts of casting alloy and parts of virgin alloy. Therefore, the objective of the present study was to analyze the mechanical properties of a commercial cobalt-chromium alloy of odontological use after successive recasting, searching information to guide the dental prosthesis laboratories in the correct manipulation of the cobalt-chromium alloy in the process of casting and the possible limits of recasting in the mechanical properties of this material. Seven sample groups were confectioned, each one containing five test bodies, divided in the following way: G1: casting only with virgin alloy; G2: casting with 50% of the alloy of the G1 + 50% of virgin alloy; G3: casting with 50% of the alloy of the G2 + 50% of virgin alloy; G4: casting with 50% of the alloy of the G3 + 50% of virgin alloy; G5: 50% of alloy of the G4 + 50% of virgin alloy; G6: 50% of alloy of the G5 + 50% of virgin alloy and finally the G7, only with recasting alloy. The modifications in the mechanical behavior of the alloy were evaluated. Moreover, it was carried the micro structural characterization of the material by optic and electronic scanning microscopy, and X ray diffraction.and fluorescence looking into the correlatation of the mechanical alterations with structural modifications of the material caused by successive recasting process. Generally the results showed alterations in the fracture energy of the alloy after successive recasting, resulting mainly of the increasing presence of pores and large voids, characteristic of the casting material. Thus, the interpretation of the results showed that the material did not reveal significant differences with respect to the tensile strength or elastic limit, as a function of successive recasting. The elastic modulus increased from the third recasting cycle on, indicating that the material can be recast only twice. The fracture energy of the material decreased, as the number of recasting cycles increased. With respect to the microhardness, the statistical analyses showedno significant differences. Electronic scanning microscopy revealed the presence of imperfections and defects, resulting of the recasting process. X ray diffraction and fluorescence did not show alterations in the composition of the alloy or the formation of crystalline phases between the analyzed groups. The optical micrographs showed an increasing number of voids and porosity as the material was recast. Therefore, the general conclusion of this study is that the successive recasting of of Co-Cr alloys affects the mechanical properties of the material, consequently leading to the failure of the prosthetic work. Based on the results, the best recommendadition is that the use of the material should be limited to two recasting cycles
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Several alloys have been used for prosthodontics restorations in the last years. These alloys have a number of metals that include gold, palladium, silver, nickel, cobalt, chromium and titanium and they are used in oral cavity undergo several corrosion. Corrosion can lead to poor esthetics, compromise of physical properties, or increased biological irritation. The objective of this study was evaluated corrosion resistance of two alloys Ni-Cr and Ni-Cr-Ti in three types of mouthwashes with different active ingredients: 0.5g/l cetylpyridinium chloride + 0.05% sodium fluoride, 0.05% sodium fluoride + 0.03% triclosan (with fluor) and 0.12% chlorohexidine digluconate. The potentiodynamic curves were performed by means of an EG&G PAR 283 potentiostat/galvanostat. The counter electrode was a platinum wire and reference electrode was an Ag/AgCl, KCl saturated. Before each experiment, working electrodes were mechanically polished with 600 and 1200 grade papers, rinsed with distilled water and dried in air. All experiments were carried out at 37.0oC in conventional three-compartment double wall glass cell containing mouthwashes. The microstructures of two alloys were observed in optical microscopy. Analysis of curves showed that Ni-Cr alloy was less reactive in the presence of 0.12% chlorohexidine digluconate while Ni-Cr-Ti alloy was more sensitive for others two types of mouthwashes (0.5g/l cetylpyridinium chloride + 0.05% sodium fluoride and 0.05% sodium fluoride + 0.03% triclosan). This occurred probably due presence of titanium in this alloy. Microstructural analysis reveals the presence of dendritic and eutectic microstructures for NiCr and Ni-Cr-Ti, respectively.
Resumo:
Sono stati studiati gli effetti tossici dell’esposizione cronica a cobalto e cromo. In passato, questa tossicità, che colpiva lavoratori esposti per ragioni occupazionali, è stata un problema molto sentito. Tuttavia, recenti pubblicazioni hanno descritto una specifica tossicità mediata da elevati livelli di cobalto e cromo, anche in pazienti portatori di protesi metalliche, quali gli impianti d’anca. Anche se sintomi clinici tra cui, cecità, sordità e neuropatia periferica, suggeriscono uno specifico neurotropismo, ancora poco è conosciuto delle basi neuropatologiche di questo processo ed oltretutto non ne è ancora stata apportata un’evidenza sperimentale. In questo progetto di ricerca, quindi, si è voluto approfondire il meccanismo patogenetico da cui scaturiscono tali sintomi neurologici, utilizzando come modello sperimentale il coniglio. Conigli New Zealand White sono stati trattati con dosi endovenose ripetute di cobalto e cromo, inoculati singolarmente od in associazione tra loro. Nessuna evidente alterazione clinica o patologica è stata associata alla somministrazione di solo cromo, nonostante gli elevati livelli in sangue e tessuti, mentre i trattati con cobalto-cromo o solo cobalto hanno mostrato segni clinici gravanti sul sistema vestibolo-cocleare; il cobalto, quindi, è stato identificato come il maggiore elemento scatenante neurotossicità. Inoltre all’esame istopatologico gli animali hanno mostrato severa deplezione delle cellule gangliari retiniche e cocleari, assieme a danno al nervo ottico e perdita di cellule sensitive capellute dell’orecchio. È risultato infine evidente che la gravità delle alterazioni è stata correlata al dosaggio ed al tempo di esposizione; dati questi che confermano, quindi, le precedenti osservazioni fatte su pazienti umani esposti a rilascio abnorme di cobalto e cromo da usura di protesi d’anca. È stato ipotizzato che il cobalto agisca sui mitocondri provocando l’incremento di produzione di specie reattive dell’ossigeno e il rilascio di fattori proapoptotici, causando sulle cellule neuronali un danno proporzionale al loro fabbisogno energetico e grado di mielinizzazione.
Resumo:
Tesis (Maestría en Ciencias de la Ingeniería Mecánica con Especialidad en Materiales) - U.A.N.L, 2001
Resumo:
The aim of this study was to compare the misfit vertical, horizontal and passivity of zirconia and cobalt-chromium frameworks fabricated for CAD / CAM technology and conventional method of casting. Sixteen frameworks in one-piece, were obtained from a metallic matrix containing three Brånemark compatible implants with regular platform (Titamax Cortical Ti, Neodent). Eight frameworks were fabricated by CAD / CAM system (NeoShape, Neodent): four in zirconia (ZirCAD) and four cobalt-chromium (CoCrcad). Eight other frameworks were obtained by conventional casting method: four cobalt-chromium with UCLA abutment premachined Co-Cr (CoCrUCci) and four cobalt-chromium with UCLA abutment castable (CoCrUCc). The fit vertical, horizontal and passivity by one-screw test were measured using scanning electron microscopy with magnification of 250x. Initially evaluated the passivity by one-screw test and subsequently to assess the vertical and horizontal misfit, tightened all the screws with a torque of 20 Ncm. Mean, standard deviation, minimum and maximum values were calculated for each group. Measurements of horizontal misfit were transformed into cumulative frequency for categorization of the variable and the group later comparison groups. To evaluate the existence of quantitative differences between the groups tested for vertical misfit and passivity, we used the Kruskal-Wallis test. The Mann-Whitney test was used to compare group to group statistical differences (p <0.05). Were observed the respective mean and standard deviation for vertical misfit and passivity in micrometers: ZirCAD (5.9 ± 3.6, 107.2 ± 36), CoCrcad (1.2 ± 2.2, 107.5 ± 26 ), CoCrUCci (11.8 ± 9.8, 124.7 ± 74), CoCrUCc (12.9 ± 11.0, 108.8 ± 85). There were statistical differences in measures of vertical misfit (p = 0.000). The Mann-Whitney test revealed statistical differences (p <0.05) between all groups except between CoCrUCci and CoCrUCc (p = 0.619). No statistical difference was observed for the passivity. In relation to the horizontal misfit groups ZirCAD and CoCrcad did not show best values in relation to CoCrUCci and CoCrUCc. Based on the results it can be concluded that frameworks fabricated by CAD / CAM technology had better values of vertical fit than those manufactured by the casting method, nevertheless, the passivity was not influenced by manufacturing technique and material used. The horizontal fit obtained by frameworks manufactured by CAD / CAM was not superior to those manufactured by casting. A lower variability in vertical adjustment and passivity was observed when frameworks were fabricated by CAD / CAM technology
Resumo:
The objective of this research was to evaluate the passivity and strain induced in infrastructures screwed on abutments, made by CAD/CAM technology, and to compare these samples with parts manufactured by conventional casting. Using CAD/CAM technology, 4 samples were made from zirconia (Zircad) and 4 samples were manufactured from cobaltchrome (CoCrcad). The control groups were 4 specimens of cobalt-chrome, made by onepiece casting (CoCrci), for a total of 12 infrastructures. To evaluate the passivity, the infraestructures were installed on the abutments. One end was tightened and the vertical gap between the infrastructure and the prosthetic abutment was measured with scanning electron microscopy (250×). The mean strain in these infrastructures was analyzed via the photoelasticity test. A significant difference (p = 0.000) in passivity was observed between the control (CoCrci) and sample groups (CoCrcad and CoCrci). CoCrcad exhibited the best value of passivity (48.76 ± 13.45 μm) and CoCrci the worst (187.55 ± 103.63 μm), Zircad presented an intermediate value (103.81 ± 43.15 μm). When compared to the other groups, CoCrci showed the highest mean strain around the implants (17.19 ± 7.22 kPa). It was concluded that the zirconia infrastructure made by CAD / CAM showed a higher vertical marginal misfit than those made in cobalt-chromium alloy with the same methodology, however, the tension generated in the implants was similar. The CAD/CAM technology is more accurate for passivity and mean strain of infrastructure screwed on abutments than conventional manufacturing techniques
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Um bloco de poliuretano recebeu três implantes de hexagono externo, no posicionamento compensado. Para cada implante foi conectado o pilar protético microunit. Foram realizados cinco enceramentos com três coifas plásticas cada um, que foram fundidos em monobloco numa liga de cobalto-cromo. Foram colados quatro extensomêtros tangenciando cada implante, sendo dois extensomêtros para o implante central. Após o acabamento, as estruturas foram fixadas nos respectivos locais com o parafuso de retenção com torque de 10 Ncm, obtidos com um torquímetro. Para aplicação de carga sobre os corpos-de-prova foram selecionados cinco pontos de aplicação de carga. O dispositivo de aplicação de carga–DAC foi utilizado 30 kg de cargas verticais estáticas, empregando uma ponta esférica de 2 mm de diamêtro, durante 10 segundos em cada um dos pontos estabelecidos, sendo, neste instante registradas as micro deformações de cada extensômetro. Foi utilizado o teste de análise de variância T Student e o nível de significância foi o valor convencional de 5%. Para cada implante foi analisada a microdeformação ocorrida. Os resultados obtidos mostraram que houve uma diferença estatisticamente significativa entre os pontos não-axiais D e E (t = 5,21 df = 4, p = 0,006 < 0,05) e não foi estatisticamente significativa para os dados axial entre os pontos B e C (t = 6, 57, df = 4, p = 0,003 < 0,05 / 3). Conclui-se que,a aplicação de carga ao redor de três implantes de hexágono externo no posicionamento compensado,mostra que os pontos não-axiais sofrem maior micro deformação do que os pontos axiais