935 resultados para Liberalized electricity market
Resumo:
This paper presents a software tool (SIM_CMTP) that solves congestion situations and evaluates the taxes to be paid to the transmission system by market agents. SIM_CMTP provides users with a set of alternative methods for cost allocation and enables the definition of specific rules, according to each market and/or situation needs. With these characteristics, SIM_CMTP can be used as an operation aid for Transmission System Operator (TSO) or Independent System Operator (ISO). Due to its openness, it can also be used as a decision-making support tool for evaluating different options of market rules in competitive market environment, guarantying the economic sustainability of the transmission system.
Resumo:
Electricity market players operating in a liberalized environment require adequate decision support tools, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. This paper deals with short-term predication of day-ahead spinning reserve (SR) requirement that helps the ISO to make effective and timely decisions. Based on these forecasted information, market participants can use strategic bidding for day-ahead SR market. The proposed concepts and methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A case study based on California ISO (CAISO) data is included; the forecasted results are presented and compared with CAISO published forecast.
Resumo:
Adequate decision support tools are required by electricity market players operating in a liberalized environment, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services (AS) represent a good negotiation opportunity that must be considered by market players. Based on the ancillary services forecasting, market participants can use strategic bidding for day-ahead ancillary services markets. For this reason, ancillary services market simulation is being included in MASCEM, a multi-agent based electricity market simulator that can be used by market players to test and enhance their bidding strategies. The paper presents the methodology used to undertake ancillary services forecasting, based on an Artificial Neural Network (ANN) approach. ANNs are used to day-ahead prediction of non-spinning reserve (NS), regulation-up (RU), and regulation down (RD). Spinning reserve (SR) is mentioned as past work for comparative analysis. A case study based on California ISO (CAISO) data is included; the forecasted results are presented and compared with CAISO published forecast.
Electricity market equilibrium of thermal and wind generating plants in emission trading environment
Resumo:
The Vehicle-to-Grid (V2G) concept is based on the newly developed and marketed technologies of hybrid petrol-electric vehicles, most notably represented by the Toyota Prius, in combination with significant structural changes to the world's energy economy, and the growing strain on electricity networks. The work described in this presentation focuses on the market and economic impacts of grid connected vehicles. We investigate price reduction effects and transmission system expansion cost reduction. We modelled a large numbers of plug-in-hybrid vehicle batteries by aggregating them into a virtual pumped-storage power station at the Australian national electricity market's (NEM) region level. The virtual power station concept models a centralised control for dispatching (operating) the aggregated electricity supply/demand capabilities of a large number of vehicles and their batteries. The actual level of output could be controlled by human or automated agents to either charge or discharge from/into the power grid. As previously mentioned the impacts of widespread deployments of this technology are likely to be economic, environmental and physical.
Resumo:
This paper presents a series of operating schedules for Battery Energy Storage Companies (BESC) to provide peak shaving and spinning reserve services in the electricity markets under increasing wind penetration. As individual market participants, BESC can bid in ancillary services markets in an Independent System Operator (ISO) and contribute towards frequency and voltage support in the grid. Recent development in batteries technologies and availability of the day-ahead spot market prices would make BESC economically feasible. Profit maximization of BESC is achieved by determining the optimum capacity of Energy Storage Systems (ESS) required for meeting spinning reserve requirements as well as peak shaving. Historic spot market prices and frequency deviations from Australia Energy Market Operator (AEMO) are used for numerical simulations and the economic benefits of BESC is considered reflecting various aspects in Australia’s National Electricity Markets (NEM).
Resumo:
This work presents a demand side response model (DSR) which assists small electricity consumers, through an aggregator, exposed to the market price to proactively mitigate price and peak impact on the electrical system. The proposed model allows consumers to manage air-conditioning when as a function of possible price spikes. The main contribution of this research is to demonstrate how consumers can minimise the total expected cost by optimising air-conditioning to account for occurrences of a price spike in the electricity market. This model investigates how pre-cooling method can be used to minimise energy costs when there is a substantial risk of an electricity price spike. The model was tested with Queensland electricity market data from the Australian Energy Market Operator and Brisbane temperature data from the Bureau of Statistics during hot days on weekdays in the period 2011 to 2012.
Resumo:
This paper introduces the smooth transition logit (STL) model that is designed to detect and model situations in which there is structural change in the behaviour underlying the latent index from which the binary dependent variable is constructed. The maximum likelihood estimators of the parameters of the model are derived along with their asymptotic properties, together with a Lagrange multiplier test of the null hypothesis of linearity in the underlying latent index. The development of the STL model is motivated by the desire to assess the impact of deregulation in the Queensland electricity market and ascertain whether increased competition has resulted in significant changes in the behaviour of the spot price of electricity, specifically with respect to the occurrence of periodic abnormally high prices. The model allows the timing of any change to be endogenously determined and also market participants' behaviour to change gradually over time. The main results provide clear evidence in support of a structural change in the nature of price events, and the endogenously determined timing of the change is consistent with the process of deregulation in Queensland.
Resumo:
The objective of this thesis is to find out how dominant firms in a liberalised electricity market will react when they face an increase in the level of costs due to emissions trading, and how this will effect the price of electricity. The Nordic electricity market is chosen as the setting in which to examine the question, since recent studies on the subject suggest that interaction between electricity markets and emissions trading is very much dependent on conditions specific to each market area. There is reason to believe that imperfect competition prevails in the Nordic market, thus the issue is approached through the theory of oligopolistic competition. The generation capacity available at the market, marginal cost of electricity production and seasonal levels of demand form the data based on which the dominant firms are modelled using the Cournot model of competition. The calculations are made for two levels of demand, high and low, and with several values of demand elasticity. The producers are first modelled under no carbon costs and then by adding the cost of carbon dioxide at 20€/t to those technologies subject to carbon regulation. In all cases the situation under perfect competition is determined as a comparison point for the results of the Cournot game. The results imply that the potential for market power does exist on the Nordic market, but the possibility for exercising market power depends on the demand level. In season of high demand the dominant firms may raise the price significantly above competitive levels, and the situation is aggravated when the cost of carbon dioixide is accounted for. Under low demand leves there is no difference between perfect and imperfect competition. The results are highly dependent on the price elasticity of demand.
Resumo:
In this paper we measure the impact of regulatory measures which affected the Spanish electricity wholesale market in the period 2002-2005. Our approach is based on the fact that regulation changes firms' incentives and therefore their market behavior. In the absence of any regulation firms would choose profit- maximizing prices on their residual demands so that the observed gap between optimal and actual prices provides a measure of the effect of regulation. Our results indicate that regulation has decreased wholesale prices considerably, but became less effective at the end of the sample period which explains the change of regulatory regime introduced in 2006.
Resumo:
We model the Spanish wholesale market as a multiplant linear supply function competition model. According to the theory, the larger generators should have supply curves for each plant which are to the left of the supply curves of plants owned by smaller generators. We test this prediction for fuel plants using data from the Spanish Market Operator (OMEL) from May 2001 to December 2003. Our results indicate that the prediction of the model holds.
Resumo:
The paper has two major contributions to the theory of repeated games. First, we build a supergame oligopoly model where firms compete in supply functions, we show how collusion sustainability is affected by the presence of a convex cost function, the magnitude of both the slope of demand market, and the number of rivals. Then, we compare the results with those of the traditional Cournot reversion under the same structural characteristics. We find how depending on the number of firms and the slope of the linear demand, collusion sustainability is easier under supply function than under Cournot competition. The conclusions of the models are simulated with data from the Spanish wholesale electricity market to predict lower bounds of the discount factors.
Resumo:
This work illustrates the influence of wind forecast errors on system costs, wind curtailment and generator dispatch in a system with high wind penetration. Realistic wind forecasts of different specified accuracy levels are created using an auto-regressive moving average model and these are then used in the creation of day-ahead unit commitment schedules. The schedules are generated for a model of the 2020 Irish electricity system with 33% wind penetration using both stochastic and deterministic approaches. Improvements in wind forecast accuracy are demonstrated to deliver: (i) clear savings in total system costs for deterministic and, to a lesser extent, stochastic scheduling; (ii) a decrease in the level of wind curtailment, with close agreement between stochastic and deterministic scheduling; and (iii) a decrease in the dispatch of open cycle gas turbine generation, evident with deterministic, and to a lesser extent, with stochastic scheduling.
Resumo:
In late 2008, the Government of the Republic of Ireland set a specific target that 10% of all vehicles in its transport fleet be powered by electricity by 2020 in order to meet European Union renewable energy targets and greenhouse gas emissions reduction targets. International there are similar targets. This is a considerable challenge as in 2009, transport accounted for 29% of non-emissions trading scheme greenhouse gas emissions, 32% of energy-related greenhouse gas emissions, 21% of total greenhouse gas emissions and approximately 50% of energy-related non-emission trading scheme greenhouse gas emissions. In this paper the impacts of 10% electric vehicle charging on the single wholesale electricity market for the Republic of Ireland and Northern Ireland is examined. The energy consumed and the total carbon dioxide emissions generated under different charging scenarios is quantified and the results of the charging scenarios are compared to identify the best implementation strategy.
Resumo:
To meet European Union renewable energy and greenhouse gas emissions reduction targets the Irish government set a target in 2008 that 10% of all vehicles in the transport fleet be powered by electricity by 2020. Similar electric vehicle targets have been introduced in other countries. However, reducing energy consumption and decreasing greenhouse gas emissions in transport is a considerable challenge due to heavy reliance on fossil fuels. In fact, transport in the Republic of Ireland in 2009 accounted for 29% of non-emissions trading scheme greenhouse gas emissions, 32% of energy-related greenhouse gas emissions, 21% of total greenhouse gas emissions and approximately 50% of energy-related non-emission trading scheme greenhouse gas emissions. In this paper the effect of electric vehicle charging on the operation of the single wholesale electricity market for the Republic of Ireland and Northern Ireland is analysed. The energy consumed, greenhouse gas emissions generated and changes to the wholesale price of electricity under peak and off-peak charging scenarios are quantified and discussed. Results from the study show that off-peak charging is more beneficial than peak charging.