930 resultados para Lax-wendroff Schemes
Resumo:
Numerical solutions of the sediment conservation law are reviewed in terms of their application to bed update schemes in coastal morphological models. It is demonstrated that inadequately formulated numerical techniques lead to the introduction of diffusion, dispersion and the bed elevation oscillations previously reported in the literature. Four different bed update schemes are then reviewed and tested against benchmark analytical solutions. These include a first order upwind scheme, two Lax-Wendroff schemes and a non-oscillating centred scheme (NOCS) recently applied to morphological modelling by Saint-Cast [Saint-Cast, F., 2002. Modelisation de la morphodynamique des corps sableux en milieu littoral (Modelling of coastal sand banks morphodynamics), University Bordeaux 1, Bordeaux, 245 pp.]. It is shown that NOCS limits and controls numerical errors while including all the sediment flux gradients that control morphological change. Further, no post solution filtering is required, which avoids difficulties with selecting filter strength. Finally, NOCS is compared to a recent Lax-Wendroff scheme with post-solution filtering for a longer term simulation of the morphological evolution around a trained river entrance. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
The shallow water equations are widely used in modelling environmental flows. Being a hyperbolic system of differential equations, they admit shocks that represent hydraulic jumps and bores. Although the water surface can be solved satisfactorily with the modern shock-capturing schemes, the predicted flow rate often suffers from imbalances where shocks occur, eg the mass conservation is violated by failing to maintain a constant discharge rate at every cross-section in a steady open channel flow. A total-variation-diminishing Lax-Wendroff scheme is developed, and used to demonstrate how to achieve an exact flux balance. The performance of the proposed methods is inspected through some test cases, which include 1- and 2-dimensional, flat and irregular bed scenarios. The proposed methods are shown to preserve the mass exactly, and can be easily extended to other shock-capturing models.
Resumo:
The scheme is based on Ami Harten's ideas (Harten, 1994), the main tools coming from wavelet theory, in the framework of multiresolution analysis for cell averages. But instead of evolving cell averages on the finest uniform level, we propose to evolve just the cell averages on the grid determined by the significant wavelet coefficients. Typically, there are few cells in each time step, big cells on smooth regions, and smaller ones close to irregularities of the solution. For the numerical flux, we use a simple uniform central finite difference scheme, adapted to the size of each cell. If any of the required neighboring cell averages is not present, it is interpolated from coarser scales. But we switch to ENO scheme in the finest part of the grids. To show the feasibility and efficiency of the method, it is applied to a system arising in polymer-flooding of an oil reservoir. In terms of CPU time and memory requirements, it outperforms Harten's multiresolution algorithm.The proposed method applies to systems of conservation laws in 1Dpartial derivative(t)u(x, t) + partial derivative(x)f(u(x, t)) = 0, u(x, t) is an element of R-m. (1)In the spirit of finite volume methods, we shall consider the explicit schemeupsilon(mu)(n+1) = upsilon(mu)(n) - Deltat/hmu ((f) over bar (mu) - (f) over bar (mu)-) = [Dupsilon(n)](mu), (2)where mu is a point of an irregular grid Gamma, mu(-) is the left neighbor of A in Gamma, upsilon(mu)(n) approximate to 1/mu-mu(-) integral(mu-)(mu) u(x, t(n))dx are approximated cell averages of the solution, (f) over bar (mu) = (f) over bar (mu)(upsilon(n)) are the numerical fluxes, and D is the numerical evolution operator of the scheme.According to the definition of (f) over bar (mu), several schemes of this type have been proposed and successfully applied (LeVeque, 1990). Godunov, Lax-Wendroff, and ENO are some of the popular names. Godunov scheme resolves well the shocks, but accuracy (of first order) is poor in smooth regions. Lax-Wendroff is of second order, but produces dangerous oscillations close to shocks. ENO schemes are good alternatives, with high order and without serious oscillations. But the price is high computational cost.Ami Harten proposed in (Harten, 1994) a simple strategy to save expensive ENO flux calculations. The basic tools come from multiresolution analysis for cell averages on uniform grids, and the principle is that wavelet coefficients can be used for the characterization of local smoothness.. Typically, only few wavelet coefficients are significant. At the finest level, they indicate discontinuity points, where ENO numerical fluxes are computed exactly. Elsewhere, cheaper fluxes can be safely used, or just interpolated from coarser scales. Different applications of this principle have been explored by several authors, see for example (G-Muller and Muller, 1998).Our scheme also uses Ami Harten's ideas. But instead of evolving the cell averages on the finest uniform level, we propose to evolve the cell averages on sparse grids associated with the significant wavelet coefficients. This means that the total number of cells is small, with big cells in smooth regions and smaller ones close to irregularities. This task requires improved new tools, which are described next.
Resumo:
This paper examines the effect of anisotropic growth on the evolution of mechanical stresses in a linear-elastic model of a growing, avascular tumour. This represents an important improvement on previous linear-elastic models of tissue growth since it has been shown recently that spatially-varying isotropic growth of linear-elastic tissues does not afford the necessary stress-relaxation for a steady-state stress distribution upon reaching a nutrient-regulated equilibrium size. Time-dependent numerical solutions are developed using a Lax-Wendroff scheme, which show the evolution of the tissue stress distributions over a period of growth until a steady-state is reached. These results are compared with the steady-state solutions predicted by the model equations, and key parameters influencing these steady-state distributions are identified. Recommendations for further extensions and applications of this model are proposed.
Resumo:
Many physical problems can be modeled by scalar, first-order, nonlinear, hyperbolic, partial differential equations (PDEs). The solutions to these PDEs often contain shock and rarefaction waves, where the solution becomes discontinuous or has a discontinuous derivative. One can encounter difficulties using traditional finite difference methods to solve these equations. In this paper, we introduce a numerical method for solving first-order scalar wave equations. The method involves solving ordinary differential equations (ODEs) to advance the solution along the characteristics and to propagate the characteristics in time. Shocks are created when characteristics cross, and the shocks are then propagated by applying analytical jump conditions. New characteristics are inserted in spreading rarefaction fans. New characteristics are also inserted when values on adjacent characteristics lie on opposite sides of an inflection point of a nonconvex flux function, Solutions along characteristics are propagated using a standard fourth-order Runge-Kutta ODE solver. Shocks waves are kept perfectly sharp. In addition, shock locations and velocities are determined without analyzing smeared profiles or taking numerical derivatives. In order to test the numerical method, we study analytically a particular class of nonlinear hyperbolic PDEs, deriving closed form solutions for certain special initial data. We also find bounded, smooth, self-similar solutions using group theoretic methods. The numerical method is validated against these analytical results. In addition, we compare the errors in our method with those using the Lax-Wendroff method for both convex and nonconvex flux functions. Finally, we apply the method to solve a PDE with a convex flux function describing the development of a thin liquid film on a horizontally rotating disk and a PDE with a nonconvex flux function, arising in a problem concerning flow in an underground reservoir.
Resumo:
This paper investigates the interaction of solitary waves (representative of tsunamis) with idealized flat-topped conical islands. The investigation is based on simulations produced by a numerical model that solves the two-dimensional Boussinesq-type equations of Madsen and Sørensen using a total variation diminishing Lax-Wendroff scheme. After verification against published laboratory data on solitary wave run-up at a single island, the numerical model is applied to study the maximum run-up at a pair of identical conical islands located at different spacings apart for various angles of wave attack. The predicted results indicate that the maximum run-up can be attenuated or enhanced according to the position of the second island because of wave refraction, diffraction, and reflection. It is also observed that the local wave height and hence run-up can be amplified at certain gap spacing between the islands, owing to the interference between the incident waves and the reflected waves between islands. © 2012 American Society of Mechanical Engineers.
Resumo:
A newly developed computer model, which solves the horizontal two-dimensional Boussinesq equations using a total variation diminishing Lax-Wendroff scheme, has been used to study the runup of solitary waves, with various heights, on idealized conical islands consisting of side slopes of different angles. This numerical model has first been validated against high-quality laboratory measurements of solitary wave runups on a uniform plane slope and on an isoliated conical island, with satisfactory agreement being achieved. An extensive parametric study concerning the effects of the wave height and island slope on the solitary wave runup has subsequently been carried out. Strong wave shoaling and diffraction effects have been observed for all the cases investigated. The relationship between the runup height and wave height has been obtained and compared with that for the case on uniform plane slopes. It has been found that the runup on a conical island is generally lower than that on a uniform plane slope, as a result of the two-dimensional effect. The correlation between the runup with the side slope of an island has also been identified, with higher runups on milder slopes. This comprehensive study on the soliton runup on islands is relevant to the protection of coastal and inland regions from extreme wave attacks. © the Coastal Education & Research Foundation 2012.
Resumo:
In this talk, we propose an all regime Lagrange-Projection like numerical scheme for the gas dynamics equations. By all regime, we mean that the numerical scheme is able to compute accurate approximate solutions with an under-resolved discretization with respect to the Mach number M, i.e. such that the ratio between the Mach number M and the mesh size or the time step is small with respect to 1. The key idea is to decouple acoustic and transport phenomenon and then alter the numerical flux in the acoustic approximation to obtain a uniform truncation error in term of M. This modified scheme is conservative and endowed with good stability properties with respect to the positivity of the density and the internal energy. A discrete entropy inequality under a condition on the modification is obtained thanks to a reinterpretation of the modified scheme in the Harten Lax and van Leer formalism. A natural extension to multi-dimensional problems discretized over unstructured mesh is proposed. Then a simple and efficient semi implicit scheme is also proposed. The resulting scheme is stable under a CFL condition driven by the (slow) material waves and not by the (fast) acoustic waves and so verifies the all regime property. Numerical evidences are proposed and show the ability of the scheme to deal with tests where the flow regime may vary from low to high Mach values.