961 resultados para Lattice distortions
Resumo:
Multiferroic materials are characterized by simultaneous magnetic and ferroelectric ordering making them good candidates for magneto-electrical applications. We conducted thermal expansion and magnetostriction measurements in magnetic fields up to 14 T on perovskitic GdMnO3 by highresolution capacitive dilatometry in an effort to determine all longitudinal and transversal components of the magnetostriction tensor. Below the ordering temperature T (N) = 42 K, i.e., within the different complex (incommensurate or complex) antiferromagnetic phases, lattice distortions of up to 100 ppm have been found. Although no change of the lattice symmetry occurs, the measurements reveal strong magneto-structural phenomena, especially in the incommensurate sinusoidal antiferromagnetic phase. A strong anisotropy of the magnetoelastic properties was found, in good agreement with the type and propagation vector of the magnetic structure. We demonstrate that our capacitive dilatometry can detect lattice expansion effects and changes of the dielectric permittivity simultaneously because the sample is housed inside the capacitor. A separation of both effects is possible by shielding the sample. Dielectric transitions could be detected by this method and compared to the critical values of H and T in the magnetic phase diagram. Dielectric changes measured at 1 kHz excitation frequency are detected in GdMnO3 at about 180 K, and between 10 K and 25 K in the canted antiferromagnetic structure which is characterized by a complex magnetic order on both the Gd- and Mn-sites.
Resumo:
A systematic study of Raman spectra on Yttrium doped NdMnO3 polycrystalline samples was undertaken to understand the lattice dynamics in this compound. Raman active phonons were analyzed and the observed peak were assigned to elucidate various phonon modes in the range (200 - 800) cm(-1). It was observed that at 325 cm(-1) phonon frequency shifts upward as much as upto 4 % with increase in Yttrium content. Lattice distortions manifest themselves by frequency shifts in both bending and tilt modes of MnO6 octahedra, resulting in increase of Raman band line-widths.
Resumo:
The organic charge-transfer salt EtMe3P[Pd(dmit)(2)](2) is a quasi-two-dimensional Mott insulator with localized spins S = 1/2 residing on a distorted triangular lattice. Here we report measurements of the uniaxial thermal expansion coefficients alpha(i) along the in-plane i = a and c axis as well as along the out-of-plane b axis for temperatures 1.4 K <= T <= 200 K. Particular attention is paid to the lattice effects around the phase transition at T-VBS = 25 K into a low-temperature valence-bond-solid phase and the paramagnetic regime above where effects of short-range antiferromagnetic correlations can be expected. The salient results of our study include (i) the observation of strongly anisotropic lattice distortions accompanying the formation of the valence-bond-solid phase, and (ii) a distinct anomaly in the thermal expansion coefficients in the paramagnetic regime around 40 K. Our results demonstrate that upon cooling through T-VBS the in-plane c axis, along which the valence bonds form, contracts while the second in-plane a axis elongates by the same relative amount. Surprisingly, the dominant effect is observed for the out-of-plane b axis which shrinks significantly upon cooling through T-VBS. The pronounced anomaly in alpha(i) around 40 K is attributed to short-range magnetic correlations. It is argued that the position of this maximum, relative to that in the magnetic susceptibility around 70 K, speaks in favor of a more anisotropic triangular-lattice scenario for this compound than previously thought.
Resumo:
In this thesis, the author proposed and developed gas sensors made of nanostructured WO3 thin film by a thermal evaporation technique. This technique gives control over film thickness, grain size and purity. The device fabrication, nanostructured material synthesis, characterization and gas sensing performance have been undertaken. Three different types of nanostructured thin films, namely, pure WO3 thin films, iron-doped WO3 thin films by co-evaporation and Fe-implanted WO3 thin films have been synthesized. All the thin films have a film thickness of 300 nm. The physical, chemical and electronic properties of these films have been optimized by annealing heat treatment at 300ºC and 400ºC for 2 hours in air. Various analytical techniques were employed to characterize these films. Atomic Force Microscopy and Transmission Electron Microscopy revealed a very small grain size of the order 5-10 nm in as-deposited WO3 films, and annealing at 300ºC or 400ºC did not result in any significant change in grain size. X-ray diffraction (XRD) analysis revealed a highly amorphous structure of as-deposited films. Annealing at 300ºC for 2 hours in air did not improve crystallinity in these films. However, annealing at 400ºC for 2 hours in air significantly improved the crystallinity in pure and iron-doped WO3 thin films, whereas it only slightly improved the crystallinity of iron-implanted WO3 thin film as a result of implantation. Rutherford backscattered spectroscopy revealed an iron content of 0.5 at.% and 5.5 at.% in iron-doped and iron-implanted WO3 thin films, respectively. The RBS results have been confirmed using energy dispersive x-ray spectroscopy (EDX) during analysis of the films using transmission electron microscopy (TEM). X-ray photoelectron spectroscopy (XPS) revealed significant lowering of W 4f7/2 binding energy in all films annealed at 400ºC as compared with the as-deposited and 300ºC annealed films. Lowering of W 4f7/2 is due to increase in number of oxygen vacancies in the films and is considered highly beneficial for gas sensing. Raman analysis revealed that 400ºC annealed films except the iron-implanted film are highly crystalline with significant number of O-W-O bonds, which was consistent with the XRD results. Additionally, XRD, XPS and Raman analyses showed no evidence of secondary peaks corresponding to compounds of iron due to iron doping or implantation. This provided an understanding that iron was incorporated in the host WO3 matrix rather than as a separate dispersed compound or as catalyst on the surface. WO3 thin film based gas sensors are known to operate efficiently in the temperature range 200ºC-500 ºC. In the present study, by optimizing the physical, chemical and electronic properties through heat treatment and doping, an optimum response to H2, ethanol and CO has been achieved at a low operating temperature of 150ºC. Pure WO3 thin film annealed at 400ºC showed the highest sensitivity towards H2 at 150ºC due to its very small grain size and porosity, coupled with high number of oxygen vacancies, whereas Fe-doped WO3 film annealed at 400ºC showed the highest sensitivity to ethanol at an operating temperature of 150ºC due to its crystallinity, increased number of oxygen vacancies and higher degree of crystal distortions attributed to Fe addition. Pure WO3 films are known to be insensitive to CO, but iron-doped WO3 thin film annealed at 300ºC and 400ºC showed an optimum response to CO at an operating temperature of 150ºC. This result is attributed to lattice distortions produced in WO3 host matrix as a result of iron incorporation as substitutional impurity. However, iron-implanted WO3 thin films did not show any promising response towards the tested gases as the film structure has been damaged due to implantation, and annealing at 300ºC or 400ºC was not sufficient to induce crystallinity in these films. This study has demonstrated enhanced sensing properties of WO3 thin film sensors towards CO at lower operating temperature, which was achieved by optimizing the physical, chemical and electronic properties of the WO3 film through Fe doping and annealing. This study can be further extended to systematically investigate the effects of different Fe concentrations (0.5 at.% to 10 at.%) on the sensing performance of WO3 thin film gas sensors towards CO.
Resumo:
We report Extended X-ray Absorption Fine Structure and anelastic spectroscopy measurements on on hole doped manganese oxides La1-xCaxMnO3 which present the colossal magnetoresistance effect. EXAFS measurements were realized both in the absence and presence of an applied magnetic field of 1.1 Tesla, in a wide temperature range (between 330 and 77 K) and at various dopings (x = 0.25 and x = 0.33). The magnetic field orders the magnetic moments so favouring the electron mobility and the reduction of Mn-O octahedra distortions. We observe the presence of four short and two long Mn-O distances (1.93 and 2.05 Angstrom respectively) above and also below the metal-insulator phase transition. The overall distortion decreases but does not completely disappear in the metallic phase suggesting the possible coexistence of metallic and insulating regions at low temperatures. The magnetic field reduces the lattice distortions showing evidence of a microscopic counterpart of the macroscopic colossal magnetoresistance. We also present preliminary anelastic relaxation spectra in a wide temperature range from 900 K to 1 K on a sample with x = 0.40, in order to study the structural phase transitions and the lattice dynamics. A double peak has been observed at the metal-insulator transition in the imaginary part of Young's modulus. This double peak indicates that the metal-insulator transition could be a more complex phenomenon than a simple second order phase transition. In particular the peak at lower temperatures can be connected with the possible presence of inhomogeneous phase structures. Another intense dissipation peak has been observed corresponding to the structural orthorhombic-trigonal transition around 750 K.
Resumo:
A new two-dimensional structure modulation along c- and b-axes has been discovered in superconducting single crystals of Bi2.13Sr1.87CuO6+delta (Bi2201) by x-ray scattering. Such modulation structure does not exist in non-superconducting Bi2201 single crystals, but instead lattice distortions are observed in the a-b-plane. This phenomenon may indicate that both strain relaxation and charge modulation in the a-b-plane are important to the occurrence of superconductivity in the copper oxides.
Resumo:
Este trabalho centra-se na investigação da possibilidade de se conseguir um semicondutor magnético diluído (SMD) baseado em ZnO. Foi levado a cabo um estudo detalhado das propriedades magnéticas e estruturais de estruturas de ZnO, nomeadamente nanofios (NFs), nanocristais (NCs) e filmes finos, dopadas com metais de transição (MTs). Foram usadas várias técnicas experimentais para caracterizar estas estruturas, designadamente difracção de raios-X, microscopia electrónica de varrimento, ressonância magnética, SQUID, e medidas de transporte. Foram incorporados substitucionalmente nos sítios do Zn iões de Mn2+ e Co2+ em ambos os NFs e NCs de ZnO. Revelou-se para ambos os iões dopantes, que a incorporação é heterogénea, uma vez que parte do sinal de ressonância paramagnética electrónica (RPE) vem de iões de MTs em ambientes distorcidos ou enriquecidos com MTs. A partir das intensidades relativas dos espectros de RPE e de modificações da superfície, demonstra-se ainda que os NCs exibem uma estrutura core-shell. Os resultados, evidenciam que, com o aumento da concentração de MTs, a dimensão dos NCs diminui e aumentam as distorções da rede. Finalmente, no caso dos NCs dopados com Mn, obteve-se o resultado singular de que a espessura da shell é da ordem de 0.3 nm e de que existe uma acumulação de Mn na mesma. Com o objectivo de esclarecer o papel dos portadores de carga na medição das interacções ferromagnéticas, foram co-dopados filmes de ZnO com Mn e Al ou com Co e Al. Os filmes dopados com Mn, revelaram-se simplesmente paramagnéticos, com os iões de Mn substitucionais nos sítios do Zn. Por outro lado, os filmes dopados com Co exibem ferromagnetismo fraco não intrínseco, provavelmente devido a decomposição spinodal. Foram ainda efectuados estudos comparativos com filmes de ligas de Zn1-xFexO. Como era de esperar, detectaram-se segundas fases de espinela e de óxido de ferro nestas ligas; todas as amostras exibiam curvas de histerese a 300 K. Estes resultados suportam a hipótese de que as segundas fases são responsáveis pelo comportamento magnético observado em muitos sistemas baseados em ZnO. Não se observou nenhuma evidência de ferromagnetismo mediado por portadores de carga. As experiências mostram que a análise de RPE permite demonstrar directamente se e onde estão incorporados os iões de MTs e evidenciam a importância dos efeitos de superfície para dimensões menores que ~15 nm, para as quais se formam estruturas core-shell. As investigações realizadas no âmbito desta tese demonstram que nenhuma das amostras de ZnO estudadas exibiram propriedades de um SMD intrínseco e que, no futuro, são necessários estudos teóricos e experimentais detalhados das interacções de troca entre os iões de MTs e os átomos do ZnO para determinar a origem das propriedades magnéticas observadas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bi 4Ti 3- xNbxO 12 (BITNb) samples, with × ranging from 0 to 0.40 were obtained using a polymeric precursor solution. Rietveld analyses confirmed that the powders crystallize in an orthorhombic structure free of secondary phases with space group Fmmm. Raman analysis evidenced a sharp increase in the bands intensity located at 129 cm -1 and 190 cm -1 due the lattice distortion in BIT02Nb and BIT04Nb compositions. UV-vis spectra indicated that addition of niobium causes a reduction of defects in the BIT lattice due the suppression of oxygen vacancies located at BO-6 octahedral. Size and morphology of particles as well as electrical behavior of BIT ceramics were affected by addition of donor dopant. Polarization reversal was investigated by applying dc voltage through a conductive tip during the area scanning and was investigated by piezoresponse force microscopy (PFM). PFM measurements revealed a decrease in piezoelectric response with increasing Nb concentration originating from a reduced polarizability along the a-axis. High spontaneous polarization is noted for the less doped sample due the reduction of strain energy and pin charged defects after niobium addition. Copyright © 2010 American Scientific Publishers.
Resumo:
Charge-ordering phenomena have been highly topical over the past few years. A phase transition towards a charge-ordered state has been observed experimentally in several classes of materials. Among them, many studies have been devoted to the family of quasi-one-dimensional organic charge-transfer salts (TMTTF)2X, where (TMTTF) stands for tetramethyltetrathiafulvalene and X for a monovalent anion (X = PF6, AsF6 and SbF6). However, the relationship between the electron localization phenomena and the role of the lattice distortion in stabilizing the charge-ordering pattern is poorly documented in the literature. Here we present a brief overview of selected literature results, with emphasis placed on recent thermal expansion experiments probing the charge-ordering transition of these salts. © 2013 IOP Publishing Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this thesis the low-temperature magnetism of the spin-ice systems Dy2Ti2O7 and Ho2Ti2O7 is investigated. In general, a clear experimental evidence for a sizable magnetic contribution kappa_{mag} to the low-temperature, zero-field heat transport of both spin-ice materials is observed. This kappa_{mag} can be attributed to the magnetic monopole excitations, which are highly mobile in zero field and are suppressed by a rather small external field resulting in a drop of kappa(H). Towards higher magnetic fields, significant field dependencies of the phononic heat conductivities kappa_{ph}(H) of Ho2Ti2O7 and Dy2Ti2O7 are found, which are, however, of opposite signs, as it is also found for the highly dilute reference materials (Ho0.5Y0.5)2Ti2O7 and (Dy0.5Y0.5)2Ti2O7. The dominant effect in the Ho-based materials is the scattering of phonons by spin flips which appears to be significantly stronger than in the Dy-based materials. Here, the thermal conductivity is suppressed due to enhanced lattice distortions observed in the magnetostriction. Furthermore, the thermal conductivity of Dy2Ti2O7 has been investigated concerning strong hysteresis effects and slow-relaxation processes towards equilibrium states in the low-temperature and low-field regime. The thermal conductivity in the hysteretic regions slowly relaxes towards larger values suggesting that there is an additional suppression of the heat transport by disorder in the non-equilibrium states. The equilibration can even be governed by the heat current for particular configurations. A special focus was put on the dilution series Dy2Ti2O7x. From specific heat measurements, it was found that the ultra-slow thermal equilibration in pure spin ice Dy2Ti2O7 is rapidly suppressed upon dilution with non-magnetic yttrium and vanishes completely for x>=0.2 down to the lowest accessible temperatures. In general, the low-temperature entropy of (Dy1-xYx)2Ti2O7, considerably decreases with increasing x, whereas its temperature-dependence drastically increases. Thus, it could be clarified that there is no experimental evidence for a finite zero-temperature entropy in (Dy1-xYx)2Ti2O7 above x>=0.2, in clear contrast to the finite residual entropy S_{P}(x) expected from a generalized Pauling approximation. A similar discrepancy is also present between S_{P}(x) and the low-temperature entropy obtained by Monte Carlo simulations, which reproduce the experimental data from 25 K down to 0.7 K, whereas the data at 0.4 K are overestimated. A straightforward description of the field-dependence kappa(H) of the dilution series with qualitative models justifies the extraction of kappa_{mag}. It was observed that kappa_{mag} systematically scales with the degree of dilution and its low-field decrease is related to the monopole excitation energy. The diffusion coefficient D_{mag} for the monopole excitations was calculated by means of c_{mag} and kappa_{mag}. It exhibits a broad maximum around 1.6 K and is suppressed for T<=0.5 K, indicating a non-degenerate ground state in the long-time limit, and in the high-temperature range for T>=4 K where spin-ice physics is eliminated. A mean-free path of 0.3 mum is obtained for Dy2Ti2O7 at about 1 K within the kinetic gas theory.
Resumo:
Two distinct ferromagnetic phases of LaMn0.5Co0.5O3 having monoclinic structure with distinct physical properties have been studied. The ferromagnetic ordering temperature T-c is found to be different for both the phases. The origin of such contrasting characteristics is assigned to the changes in the distance(s) and angle(s) between Mn-O-Co resulting from distortions observed from neutron diffraction studies. Investigations on the temperature dependent Raman spectroscopy provide evidence for such structural characteristics, which affects the exchange interaction. The difference in B-site ordering which is evident from the neutron diffraction is also responsible for the difference in T-c. Raman scattering suggests the presence of spin-phonon coupling for both the phases around the T-c. Electrical transport properties of both the phases have been investigated based on the lattice distortion.
Resumo:
We propose an intrinsic spin scattering mechanism in graphene originated by the interplay of atomic spin-orbit interaction and the local curvature induced by flexural distortions of the atomic lattice. Starting from a multiorbital tight-binding Hamiltonian with spin-orbit coupling considered non-perturbatively, we derive an effective Hamiltonian for the spin scattering of the Dirac electrons due to flexural distortions. We compute the spin lifetime due to both flexural phonons and ripples and we find values in the 1-10 ns range at room temperature. The proposed mechanism dominates the spin relaxation in high mobility graphene samples and should also apply to other planar aromatic compounds.