883 resultados para Latent class growth analysis
Resumo:
Latent class regression models are useful tools for assessing associations between covariates and latent variables. However, evaluation of key model assumptions cannot be performed using methods from standard regression models due to the unobserved nature of latent outcome variables. This paper presents graphical diagnostic tools to evaluate whether or not latent class regression models adhere to standard assumptions of the model: conditional independence and non-differential measurement. An integral part of these methods is the use of a Markov Chain Monte Carlo estimation procedure. Unlike standard maximum likelihood implementations for latent class regression model estimation, the MCMC approach allows us to calculate posterior distributions and point estimates of any functions of parameters. It is this convenience that allows us to provide the diagnostic methods that we introduce. As a motivating example we present an analysis focusing on the association between depression and socioeconomic status, using data from the Epidemiologic Catchment Area study. We consider a latent class regression analysis investigating the association between depression and socioeconomic status measures, where the latent variable depression is regressed on education and income indicators, in addition to age, gender, and marital status variables. While the fitted latent class regression model yields interesting results, the model parameters are found to be invalid due to the violation of model assumptions. The violation of these assumptions is clearly identified by the presented diagnostic plots. These methods can be applied to standard latent class and latent class regression models, and the general principle can be extended to evaluate model assumptions in other types of models.
Resumo:
In the study reported here, we examined posttraumatic stress disorder (PTSD) symptoms in 746 Danish soldiers measured on five occasions before, during, and after deployment to Afghanistan. Using latent class growth analysis, we identified six trajectories of change in PTSD symptoms. Two resilient trajectories had low levels across all five times, and a new-onset trajectory started low and showed a marked increase of PTSD symptoms. Three temporary-benefit trajectories, not previously described in the literature, showed decreases in PTSD symptoms during (or immediately after) deployment, followed by increases after return from deployment. Predeployment emotional problems and predeployment traumas, especially childhood adversities, were predictors for inclusion in the nonresilient trajectories, whereas deployment-related stress was not. These findings challenge standard views of PTSD in two ways. First, they show that factors other than immediately preceding stressors are critical for PTSD development, with childhood adversities being central. Second, they demonstrate that the development of PTSD symptoms shows heterogeneity, which indicates the need for multiple measurements to understand PTSD and identify people in need of treatment.
Resumo:
Developing career-choice readiness is an important task in adolescence, but current theory and research has provided a rather static view of the phenomenon. The present study investigated the development of career-choice readiness among a group of 325 Swiss students assessed four times every 5 months from seventh through eighth grade. A variable-centered approach applying latent curve modeling showed not only a linear increase of readiness over time but also significant inter-individual differences in the level and development of readiness. Higher levels were predicted by more self-esteem and generalized self-efficacy and fewer perceived barriers while increase in readiness was predicted by increase in occupational information. A person-centered approach applying latent class-growth analysis identified four distinct developmental trajectories: high-increasing (42%), high-decreasing (5%), moderate-increasing (42%), and constantly low (11%). Students with different trajectories showed significant differences in core self-evaluations, occupational knowledge, and barriers. The results suggest that environmental demands promote a developmental trend in readiness development that overrules individual differences for the majority of students. Individual differences affect the level of readiness to a greater extent than the process of its development. Career information seems pivotal for readiness increase.
Resumo:
Background: Adolescent depression prevention research has focused on mean intervention outcomes, but has not considered heterogeneity in symptom course. Here, we empirically identify subgroups with distinct trajectories of depressive symptom change among adolescents enrolled in two indicated depression preven- tion trials and examine how cognitive-behavioral (CB) interventions and baseline predictors relate to trajectory membership. Methods: Six hundred thirty-one participants were assigned to one of three conditions: CB group intervention, CB bibliotherapy, and brochure control. We used group-based trajectory modeling to identify trajectories of depressive symptoms from pretest to 2-year follow-up. We examined associations between class membership and conditions using chi- square tests and baseline predictors using multinomial regressions. Results: We identified four trajectories in the full sample. Qualitatively similar trajectories were found in each condition separately. Two trajectories of positive symptom course (low-declining, high-declining) had declining symptoms and were dis- tinguished by baseline symptom severity. Two trajectories of negative course (high-persistent, resurging), respectively, showed no decline in symptoms or de- cline followed by symptom reappearance. Participants in the brochure control condition were significantly more likely to populate the high-persistent trajectory relative to either CB condition and were significantly less likely to populate the low-declining trajectory relative to CB group. Several baseline factors predicted trajectory classes, but gender was the most informative prognostic factor, with males having increased odds of membership in a high-persistent trajectory rel- ative to other trajectories. Conclusions: Findings suggest that CB preventive interventions do not alter the nature of trajectories, but reduce the risk that adolescents follow a trajectory of chronically elevated symptoms.
Resumo:
Background: Adolescent depression prevention research has focused on mean intervention outcomes, but has not considered heterogeneity in symptom course. Here, we empirically identify subgroups with distinct trajectories of depressive symptom change among adolescents enrolled in two indicated depression preven- tion trials and examine how cognitive-behavioral (CB) interventions and baseline predictors relate to trajectory membership. Methods: Six hundred thirty-one participants were assigned to one of three conditions: CB group intervention, CB bibliotherapy, and brochure control. We used group-based trajectory modeling to identify trajectories of depressive symptoms from pretest to 2-year follow-up. We examined associations between class membership and conditions using chi- square tests and baseline predictors using multinomial regressions. Results: We identified four trajectories in the full sample. Qualitatively similar trajectories were found in each condition separately. Two trajectories of positive symptom course (low-declining, high-declining) had declining symptoms and were dis- tinguished by baseline symptom severity. Two trajectories of negative course (high-persistent, resurging), respectively, showed no decline in symptoms or de- cline followed by symptom reappearance. Participants in the brochure control condition were significantly more likely to populate the high-persistent trajectory relative to either CB condition and were significantly less likely to populate the low-declining trajectory relative to CB group. Several baseline factors predicted trajectory classes, but gender was the most informative prognostic factor, with males having increased odds of membership in a high-persistent trajectory rel- ative to other trajectories. Conclusions: Findings suggest that CB preventive interventions do not alter the nature of trajectories, but reduce the risk that adolescents follow a trajectory of chronically elevated symptoms.
Resumo:
In this article, we introduce the general statistical analysis approach known as latent class analysis and discuss some of the issues associated with this type of analysis in practice. Two recent examples from the respiratory health literature are used to highlight the types of research questions that have been addressed using this approach.
Resumo:
Context Cancer patients experience a broad range of physical and psychological symptoms as a result of their disease and its treatment. On average, these patients report ten unrelieved and co-occurring symptoms. Objectives To determine if subgroups of oncology outpatients receiving active treatment (n=582) could be identified based on their distinct experience with thirteen commonly occurring symptoms; to determine whether these subgroups differed on select demographic, and clinical characteristics; and to determine if these subgroups differed on quality of life (QOL) outcomes. Methods Demographic, clinical, and symptom data from one Australian and two U.S. studies were combined. Latent class analysis (LCA) was used to identify patient subgroups with distinct symptom experiences based on self-report data on symptom occurrence using the Memorial Symptom Assessment Scale (MSAS). Results Four distinct latent classes were identified (i.e., All Low (28.0%), Moderate Physical and Lower Psych (26.3%), Moderate Physical and Higher Psych (25.4%), All High (20.3%)). Age, gender, education, cancer diagnosis, and presence of metastatic disease differentiated among the latent classes. Patients in the All High class had the worst QOL scores. Conclusion Findings from this study confirm the large amount of interindividual variability in the symptom experience of oncology patients. The identification of demographic and clinical characteristics that place patients are risk for a higher symptom burden can be used to guide more aggressive and individualized symptom management interventions.
Resumo:
Context: Identifying susceptibility genes for schizophrenia may be complicated by phenotypic heterogeneity, with some evidence suggesting that phenotypic heterogeneity reflects genetic heterogeneity. Objective: To evaluate the heritability and conduct genetic linkage analyses of empirically derived, clinically homogeneous schizophrenia subtypes. Design: Latent class and linkage analysis. Setting: Taiwanese field research centers. Participants: The latent class analysis included 1236 Han Chinese individuals with DSM-IV schizophrenia. These individuals were members of a large affected-sibling-pair sample of schizophrenia (606 ascertained families), original linkage analyses of which detected a maximum logarithm of odds (LOD) of 1.8 (z = 2.88) on chromosome 10q22.3. Main Outcome Measures: Multipoint exponential LOD scores by latent class assignment and parametric heterogeneity LOD scores. Results: Latent class analyses identified 4 classes, with 2 demonstrating familial aggregation. The first (LC2) described a group with severe negative symptoms, disorganization, and pronounced functional impairment, resembling “deficit schizophrenia.” The second (LC3) described a group with minimal functional impairment, mild or absent negative symptoms, and low disorganization. Using the negative/deficit subtype, we detected genome-wide significant linkage to 1q23-25 (LOD = 3.78, empiric genome-wide P = .01). This region was not detected using the DSM-IV schizophrenia diagnosis, but has been strongly implicated in schizophrenia pathogenesis by previous linkage and association studies.Variants in the 1q region may specifically increase risk for a negative/deficit schizophrenia subtype. Alternatively, these results may reflect increased familiality/heritability of the negative class, the presence of multiple 1q schizophrenia risk genes, or a pleiotropic 1q risk locus or loci, with stronger genotype-phenotype correlation with negative/deficit symptoms. Using the second familial latent class, we identified nominally significant linkage to the original 10q peak region. Conclusion: Genetic analyses of heritable, homogeneous phenotypes may improve the power of linkage and association studies of schizophrenia and thus have relevance to the design and analysis of genome-wide association studies.
Resumo:
Latent class and genetic analyses were used to identify subgroups of migraine sufferers in a community sample of 6,265 Australian twins (55% female) aged 25-36 who had completed an interview based on International Headache Society (IHS) criteria. Consistent with prevalence rates from other population-based studies, 703 (20%) female and 250 (9%) male twins satisfied the IHS criteria for migraine without aura (MO), and of these, 432 (13%) female and 166 (6%) male twins satisfied the criteria for migraine with aura (MA) as indicated by visual symptoms. Latent class analysis (LCA) of IHS symptoms identified three major symptomatic classes, representing 1) a mild form of recurrent nonmigrainous headache, 2) a moderately severe form of migraine, typically without visual aura symptoms (although 40% of individuals in this class were positive for aura), and 3) a severe form of migraine typically with visual aura symptoms (although 24% of individuals were negative for aura). Using the LCA classification, many more individuals were considered affected to some degree than when using IHS criteria (35% vs. 13%). Furthermore, genetic model fitting indicated a greater genetic contribution to migraine using the LCA classification (heritability, h(2)=0.40; 95% CI, 0.29-0.46) compared with the IHS classification (h(2)=0.36; 95% CI, 0.22-0.42). Exploratory latent class modeling, fitting up to 10 classes, did not identify classes corresponding to either the IHS MO or MA classification. Our data indicate the existence of a continuum of severity, with MA more severe but not etiologically distinct from MO. In searching for predisposing genes, we should therefore expect to find some genes that may underlie all major recurrent headache subtypes, with modifying genetic or environmental factors that may lead to differential expression of the liability for migraine.
Resumo:
For zygosity diagnosis in the absence of genotypic data, or in the recruitment phase of a twin study where only single twins from same-sex pairs are being screened, or to provide a test for sample duplication leading to the false identification of a dizygotic pair as monozygotic, the appropriate analysis of respondents' answers to questions about zygosity is critical. Using data from a young adult Australian twin cohort (N = 2094 complete pairs and 519 singleton twins from same-sex pairs with complete responses to all zygosity items), we show that application of latent class analysis (LCA), fitting a 2-class model, yields results that show good concordance with traditional methods of zygosity diagnosis, but with certain important advantages. These include the ability, in many cases, to assign zygosity with specified probability on the basis of responses of a single informant (advantageous when one zygosity type is being oversampled); and the ability to quantify the probability of misassignment of zygosity, allowing prioritization of cases for genotyping as well as identification of cases of probable laboratory error. Out of 242 twins (from 121 like-sex pairs) where genotypic data were available for zygosity confirmation, only a single case was identified of incorrect zygosity assignment by the latent class algorithm. Zygosity assignment for that single case was identified by the LCA as uncertain (probability of being a monozygotic twin only 76%), and the co-twin's responses clearly identified the pair as dizygotic (probability of being dizygotic 100%). In the absence of genotypic data, or as a safeguard against sample duplication, application of LCA for zygosity assignment or confirmation is strongly recommended.
Resumo:
Background: Mycobacterium tuberculosis, a causative agent of chronic tuberculosis disease, is widespread among some animal species too. There is paucity of information on the distribution, prevalence and true disease status of tuberculosis in Asian elephants (Elephas maximus). The aim of this study was to estimate the sensitivity and specificity of serological tests to diagnose M. tuberculosis infection in captive elephants in southern India while simultaneously estimating sero-prevalence. Methodology/Principal Findings: Health assessment of 600 elephants was carried out and their sera screened with a commercially available rapid serum test. Trunk wash culture of select rapid serum test positive animals yielded no animal positive for M. tuberculosis isolation. Under Indian field conditions where the true disease status is unknown, we used a latent class model to estimate the diagnostic characteristics of an existing (rapid serum test) and new (four in-house ELISA) tests. One hundred and seventy nine sera were randomly selected for screening in the five tests. Diagnostic sensitivities of the four ELISAs were 91.3-97.6% (95% Credible Interval (CI): 74.8-99.9) and diagnostic specificity were 89.6-98.5% (95% CI: 79.4-99.9) based on the model we assumed. We estimate that 53.6% (95% CI: 44.6-62.8) of the samples tested were free from infection with M. tuberculosis and 15.9% (97.5% CI: 9.8 - to 24.0) tested positive on all five tests. Conclusions/Significance: Our results provide evidence for high prevalence of asymptomatic M. tuberculosis infection in Asian elephants in a captive Indian setting. Further validation of these tests would be important in formulating area-specific effective surveillance and control measures.
Resumo:
In this paper we address issues relating to vulnerability to economic exclusion and levels of economic exclusion in Europe. We do so by applying latent class models to data from the European Community Household Panel for thirteen countries. This approach allows us to distinguish between vulnerability to economic exclusion and exposure to multiple deprivation at a particular point in time. The results of our analysis confirm that in every country it is possible to distinguish between a vulnerable and a non-vulnerable class. Association between income poverty, life-style deprivation and subjective economic strain is accounted for by allocating individuals to the categories of this latent variable. The size of the vulnerable class varies across countries in line with expectations derived from welfare regime theory. Between class differentiation is weakest in social democratic regimes but otherwise the pattern of differentiation is remarkably similar. The key discriminatory factor is life-style deprivation, followed by income and economic strain. Social class and employment status are powerful predictors of latent class membership in all countries but the strength of these relationships varies across welfare regimes. Individual biography and life events are also related to vulnerability to economic exclusion. However, there is no evidence that they account for any significant part of the socio-economic structuring of vulnerability and no support is found for the hypothesis that social exclusion has come to transcend class boundaries and become a matter of individual biography. However, the extent of socio-economic structuring does vary substantially across welfare regimes. Levels of economic exclusion, in the sense of current exposure to multiple deprivation, also vary systematically by welfare regime and social class. Taking both vulnerability to economic exclusion and levels of exclusion into account suggests that care should be exercised in moving from evidence on the dynamic nature of poverty and economic exclusion to arguments relating to the superiority of selective over universal social policies.
Resumo:
Poker is the gambling game that is currently gaining the most in popularity. However, there is little information on poker players' characteristics and risk factors. Furthermore, the first studies described poker players, often recruited in universities, as an homogeneous group who played in only one of the modes (land based or on the Internet). This study aims to identify, through latent class analyses, poker player subgroups. A convenience sample of 258 adult poker players was recruited across Quebec during special events or through advertising in various media. Participants filled out a series of questionnaires (Canadian Problem Gambling Index, Beck Depression, Beck Anxiety, erroneous belief and alcohol/drug consumption). The latent class analysis suggests that there are three classes of poker players. Class I (recreational poker players) includes those who have the lowest probability of engaging intensively in different game modes. Participants in class II (Internet poker players) all play poker on the Internet. This class includes the highest proportion of players who consider themselves experts or professionals. They make a living in part or in whole from poker. Class III (multiform players) includes participants with the broadest variety of poker patterns. This group is complex: these players are positioned halfway between professional and recreational players. Results indicate that poker players are not an homogeneous group identified simply on the basis of the form of poker played. The specific characteristics associated with each subgroup points to vulnerabilities that could potentially be targeted for preventive interventions.