999 resultados para Landsat-5
Resumo:
The objective of this work was to compare the soybean crop mapping in the western of Parana State by MODIS/Terra and TM/Landsat 5 images. Firstly, it was generated a soybean crop mask using six TM images covering the crop season, which was used as a reference. The images were submitted to Parallelepiped and Maximum Likelihood digital classification algorithms, followed by visual inspection. Four MODIS images, covering the vegetative peak, were classified using the Parallelepiped method. The quality assessment of MODIS and TM classification was carried out through an Error Matrix, considering 100 sample points between soybean or not soybean, randomly allocated in each of the eight municipalities within the study area. The results showed that both the Overall Classification (OC) and the Kappa Index (KI) have produced values ranging from 0.55 to 0.80, considered good to very good performances, either in TM or MODIS images. When OC and KI, from both sensors were compared, it wasn't found no statistical difference between them. The soybean mapping, using MODIS, has produced 70% of reliance in terms of users. The main conclusion is that the mapping of soybean by MODIS is feasible, with the advantage to have better temporal resolution than Landsat, and to be available on the internet, free of charge.
Resumo:
The objective of this study was to analyze changes in the spectral behavior of the soybean crop through spectral profiles of the vegetation indexes NDVI and GVI, expressed by different physical values such as apparent bi-directional reflectance factor (BRF), surface BRF, and normalized BRF derived from images of the Landsat 5/TM. A soybean area located in Cascavel, Paraná, was monitored by using five images of Landsat 5/TM during the 2004/2005 harvesting season. The images were submitted to radiometric transformation, atmospheric correction and normalization, determining physical values of apparent BRF, surface BRF and normalized BRF. NDVI and GVI images were generated in order to distinguish the soybean biomass spectral response. The treatments showed different results for apparent, surface and normalized BRF. Through the profiles of average NDVI and GVI, it was possible to monitor the entire soybean cycle, characterizing its development. It was also observed that the data from normalized BRF negatively affected the spectral curve of soybean crop, mainly, during the phase of vegetative growth, in the 12-9-2004 image.
Resumo:
Propôs-se, neste trabalho, estimar dados de albedo à superfície terrestre usando-se o sensor Thematic Mapper (TM) do satélite LANDSAT 5 e compará-lo com dados de duas estações agrometeorológicas localizadas em região de Cerrado e a outra em cultivo da cana-de-açúcar. A região de estudo está localizada no município de Santa Rita do Passa Quatro, SP, Brasil. Para a realização do estudo obtiveram-se seis imagens orbitais do satélite Landsat 5 sensores TM, na órbita 220 e ponto 75, nas datas de 22/02, 11/04, 29/05, 01/08, 17/08 e 21/11, todas do ano de 2005, a que correspondem os dias juliano de 53, 101, 149, 213, 229 e 325, respectivamente. As correções geométricas para as imagens foram realizadas e geradas as cartas de albedo. O algoritmo SEBAL estimou satisfatoriamente os valores de albedo de superfícies sobre áreas de cerrado e de cana-de-açúcar, na região de Santa Rita do Passa Quatro, SP, consistentes com observações realizadas do albedo à superfície.
Resumo:
The objective of this work was to evaluate the seasonal variation of soil cover and rainfall erosivity, and their influences on the revised universal soil loss equation (Rusle), in order to estimate watershed soil losses in a temporal scale. Twenty-two TM Landsat 5 images from 1986 to 2009 were used to estimate soil use and management factor (C factor). A corresponding rainfall erosivity factor (R factor) was considered for each image, and the other factors were obtained using the standard Rusle method. Estimated soil losses were grouped into classes and ranged from 0.13 Mg ha-1 on May 24, 2009 (dry season) to 62.0 Mg ha-1 on March 11, 2007 (rainy season). In these dates, maximum losses in the watershed were 2.2 and 781.5 Mg ha-1 , respectively. Mean annual soil loss in the watershed was 109.5 Mg ha-1 , but the central area, with a loss of nearly 300.0 Mg ha-1 , was characterized as a site of high water-erosion risk. The use of C factor obtained from remote sensing data, associated to corresponding R factor, was fundamental to evaluate the soil erosion estimated by the Rusle in different seasons, unlike of other studies which keep these factors constant throughout time.
Resumo:
O objetivo deste trabalho foi ajustar modelos para estimar características dendrométricas da Caatinga brasileira a partir de dados do sensor TM do Landsat 5. Medidas de diâmetro e altura das árvores foram obtidas de 60 parcelas de inventário (400 m2), em dois municípios do Estado de Sergipe. A área basal e o volume de madeira foram estimados com uso de equação alométrica e de fator de forma (f = 0,9). As variáveis explicativas foram obtidas do sensor TM, após correção radiométrica e geométrica, tendo-se considerado, na análise, seis bandas espectrais, com resolução espacial de 30 m, além dos índices de razão simples (SR), de vegetação por diferença normalizada (NDVI) e de vegetação ajustado ao solo (Savi). Na escolha das melhores variáveis explicativas, foram considerados coeficiente de determinação (R2), raiz do erro quadrático médio (RMSE) e critério bayesiano de informação (CBI). A área basal por hectare não apresentou correlação significativa com nenhuma das variáveis explicativas utilizadas. Os melhores modelos foram ajustados à altura média das árvores por parcela (R2 = 0,4; RMSE = 13%) e ao volume de madeira por hectare (R2 = 0,6; RMSE = 42%). As métricas derivadas do sensor TM do Landsat 5 têm grande potencial para explicar variações de altura média das árvores e do volume de madeira por hectare, em remanescentes de Caatinga situados no Nordeste brasileiro.
Resumo:
Resumo: O objetivo deste trabalho foi avaliar a utilização de imagens do sensor TM/Landsat 5 na diferenciação de plantios comerciais de Eucalyptus dunnii e Eucalyptus urograndis com diferentes idades. Demarcaram-se parcelas para identificar as duas espécies, em dois períodos distintos (2009 e 2011), a idades de 3 e 5 anos, para E. dunnii, e 2,2 e 4,2 anos para E. urograndis. Avaliaram-se seis bandas do sensor TM/Landsat 5 (B1, B2, B3, B4, B5 e B7) e seis índices de vegetação: razão simples (SR); índice de vegetação por diferença normalizada (NDVI); índice de vegetação ajustado ao solo (Savi)-0,25; Savi-0,5; índice de vegetação por diferença normalizada com uso da banda verde (GNDVI); e índice de umidade na vegetação (MVI). O processamento digital das imagens consistiu de correção geométrica, radiométrica e atmosférica. Os plantios de E. dunnii e E. urograndis foram diferenciados por meio de cinco bandas do Landsat (B2, B3, B4, B5 e B7) e três índices de vegetação (Savi-0,5, Savi-0,25 e GNDVI), no ano de 2009, e por quatro bandas do Landsat (B2, B4, B5 e B7) e seis índices de vegetação (NDVI, SR, Savi-0,5, Savi-0,25, MVI e GNDVI) no ano de 2011. Os dados espectrais extraídos das imagens TM/Landsat 5 são eficazes, tanto para distinguir as espécies de eucalipto como também a mesma espécie em plantios equiâneos.
Resumo:
Este trabalho aborda o levantamento da cobertura florestal natural da microrregião de Viçosa, MG, realizado em 1998, utilizando-se imagens do Landsat 5. Verificou-se que: a) a cobertura florestal natural abrange 57.310 ha (24,27% da área total), dos quais 24.184,80 ha (10,24%) correspondem a mata e 33.125,31 (14,03%) a capoeira; b) os municípios que possuem cobertura florestal natural abaixo de 20% são Cajuri, Coimbra, Canaã e São Miguel do Anta e os acima de 20%, Pedra do Anta, Ervália, Viçosa, Paula Cândido, Teixeiras, Porto Firme e Araponga; c) Cajuri é o município com a menor taxa de crescimento florestal e Araponga, com a maior; d) Araponga é o município com a maior área florestal e Coimbra, com a menor; e e) a área de cobertura florestal natural teve incremento de 13,60%, de 1994 a 1998.
Resumo:
Variáveis climáticas são essenciais para a compreensão das condições ambientais que influenciam o crescimento e o desenvolvimento vegetal. Nos últimos anos, as pesquisas que utilizam dados climáticos e técnicas de sensoriamento remoto em análises espaço-temporais da demanda por água e energia das plantas têm-se intensificado. O SEBAL (Surface Energy Balance Algorithms for Land) é um dos algoritmos mais destacados em estudos que envolvem estimativas dos fluxos de energia em grandes áreas, e pode ser aplicado com poucas medições de campo. Este trabalho, realizado no Município de Santa Bárbara, Minas Gerais, objetivou estimar os componentes do balanço de energia e, por conseguinte, a evapotranspiração em plantios de eucalipto com aplicação do algoritmo SEBAL e de imagem do sensor TM do satélite Landsat 5. As estimativas foram realizadas para cena do dia 20/06/2003. Considerando apenas as áreas referentes aos plantios de eucalipto (sete anos de idade), foram obtidos valores médios de saldo de radiação (Rn), fluxo de calor no solo (G), fluxo de calor sensível (H), fluxo de calor latente (LE) de 420,12 W m-2, 81,80 W m-2, 149,93 W m-2, 188,39 W m-2, respectivamente. Para a evapotranspiração real horária (ETr h), o valor médio obtido foi de 0,28 mm h-1. As estimativas mostraram-se condizentes com dados da literatura, no entanto pesquisas com maior controle experimental devem ser realizadas.
Resumo:
O objetivo deste trabalho foi comparar mapeamentos de semeadura da cultura da soja na região oeste do Paraná, realizados com imagens MODIS/Terra e TM/Landsat 5. Primeiramente, construiu-se máscara de referência, considerando seis imagens TM ao longo do ciclo da cultura, utilizando-se dos algoritmos Paralelepípedo e MaxVer com posterior análise visual. As imagens MODIS foram classificadas com o algorítimo Paralelepípedo, em quatro passagens referentes ao pico vegetativo. O desempenho das classificações foi avaliado por meio de Matrizes de Erros, calculadas pela análise de 100 pontos amostrais (soja ou não-soja), aleatoriamente distribuídos em cada um dos oito municípios da área de estudo. Os principais resultados mostraram que a Exatidão Global (EG) e o Índice Kappa (IK), que variaram entre 0,55 e 0,80, em ambos os sensores, são considerados bons a muito bons. Quando EG e IK dos sensores TM e MODIS foram comparados, não se encontrou diferença significativa. O mapeamento da soja utilizando o sensor MODIS produziu 70% de confiabilidade sob o ponto de vista do usuário. A principal conclusão é a viabilidade de mapear a soja pelo sensor MODIS com as vantagens de que as imagens MODIS têm melhor resolução temporal e são disponibilizadas gratuitamente na Internet.
Resumo:
O objetivo deste trabalho foi estudar as mudanças no comportamento espectral da cultura da soja, por meio dos perfis espectrais temporais dos índices de vegetação NDVI e GVI, expressos em diferentes valores físicos: fator de reflectância bidirecional (FRB) aparente, de superfície e normalizado derivados de imagens Landsat 5/TM. Foi monitorada área de cultura de soja localizada próxima ao município de Cascavel - PR, utilizando cinco imagens da safra de 2004/2005, sendo realizados nessas imagens os procedimentos de transformação radiométrica, correção atmosférica e normalização, determinando valores físicos dos fatores de reflectância bidirecional aparente, de superfície e normalizado, respectivamente. Com o intuito de caracterizar a resposta espectral da biomassa da soja, geraram-se imagens referentes aos índices de vegetação NDVI e GVI. Como resultado, a cultura mostrou-se diferente para os tratamentos dos fatores de reflectância bidirecional aparente, de superfície e de normalização. Por meio dos perfis médios espectrais do NDVI e GVI, foi possível acompanhar todo o ciclo da cultura da soja, caracterizando o seu desenvolvimento. Observou-se, ainda, que os dados provenientes do fator de reflectância bidirecional normalizado descaracterizaram a curva espectral da cultura da soja, principalmente em meio à fase de crescimento vegetativo, na data de 9-12-2004.
Resumo:
Neste trabalho, verificou-se a aderência de técnicas de mineração de dados voltadas para problemas de classificação de dados na identificação automatizada de áreas cultivadas com cana-de-açúcar, em imagens do satélite Landsat 5/TM. Para essa verificação, foram estudadas imagens de áreas cultivadas com cana-de-açúcar em três fases fenológicas diferentes. Os pixels foram convertidos em valores de refletância de superfície, nas vizinhanças das cidades de Araras, São Carlos e Araraquara, no Estado de São Paulo. Foram gerados cinco modelos de árvores de decisão binária, induzidos pelo algoritmo C4.5, em que todos produziram taxas de acerto superiores a 90%. A introdução de atributos de textura trouxe ganhos significativos na acurácia do modelo de classificação e contribuiu para melhorar a distinção de áreas cultivadas com cana-de-açúcar em meio a tipos diversos de cobertura do solo, como solo exposto, área urbana, lagos e rios. Os índices de vegetação mostraram-se relevantes na distinção da fase e do estado fenológico das culturas. Os resultados reforçam o potencial forte das árvores de decisão no processo de classificação e identificação de áreas cultivadas com cana-de-açúcar, em diferentes cidades produtoras, no Estado de São Paulo.
Resumo:
The ground surface net solar radiation is the energy that drives physical and chemical processes at the ground surface. In this paper, multi-spectral data from the Landsat-5 TM, topographic data from a gridded digital elevation model, field measurements, and the atmosphere model LOWTRAN 7 are used to estimate surface net solar radiation over the FIFE site. Firstly an improved method is presented and used for calculating total surface incoming radiation. Then, surface albedo is integrated from surface reflectance factors derived from remotely sensed data from Landsat-5 TM. Finally, surface net solar radiation is calculated by subtracting surface upwelling radiation from the total surface incoming radiation.
Resumo:
This work aims to analyze the land use evolution in the city of Santa Cruz do Rio Pardo - SP through supervised classification of Landsat-5 TM satellite images according to the maximum likelihood (Maxlike), as well as verifying the mapping accuracy through Kappa index, comparing NDVI and SAVI vegetation indexes in different adjustment factors for the canopy substrate and determining the vegetal coverage percentage in all methods used on 2007, May 26 th; 2009, January 7 th and 2009, April 29 th. The Maxlike classification showed several spatial changes in land use over the study period. The most appropriated vegetation indexes were NDVI and SAVI - 0,25 factor, which showed similar values of vegetal coverage percentage, but discrepant from the inferred value for Maxlike classification.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)