996 resultados para Landsat TM
Resumo:
Multitemporal Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) imagery was used to assess coastline morphological changes in southeastern Brazil. A spectral linear mixing approach (SLMA) was used to estimate fraction imagery representing amounts of vegetation, clean water (a proxy for shade) and soil. Fraction abundances were related to erosive and depositional features. Shoreline, sandy banks (including emerged and submerged banks) and sand spits were highlighted mainly by clean water and soil fraction imagery. To evaluate changes in the coastline geomorphic features, the fraction imagery generated for each data set was classified in a contextual approach using a segmentation technique and ISOSEG, an unsupervised classification. Evaluation of the classifications was performed visually and by an error matrix relating ground-truth data to classification results. Comparison of the classification results revealed an intense transformation in the coastline, and that erosive and depositional features are extremely dynamic and subject to change in short periods of time.
Resumo:
O mapeamento do uso da terra é fundamental para o entendimento dos processos de mudanças globais, especialmente em regiões como a Amazônia que estão sofrendo grande pressão de desenvolvimento. Tradicionalmente estes mapeamentos têm sido feitos utilizando técnicas de interpretação visual de imagens de satélites, que, embora de resultados satisfatórios, demandam muito tempo e alto custo. Neste trabalho é proposta uma técnica de segmentação da imagens com base em um algoritmo de crescimento de regiões, seguida de uma classificação não-supervisionada por regiões. Desta forma, a classificação temática se refere a um conjunto de elementos (pixels da imagem), beneficiando-se portanto da informação contextual e minimizando as limitações das técnicas de processamento digital baseadas em análise pontual (pixel-a-pixel). Esta técnica foi avaliada numa área típica da Amazônia, situada ao norte de Manaus, AM, utilizando imagens do sensor "Thematic Mapper" - TM do satélite Landsat, tanto na sua forma original quanto decomposta em elementos puros como vegetação verde, vegetação seca (madeira), sombra e solo, aqui denominada imagem misturas. Os resultados foram validados por um mapa de referência gerado a partir de técnicas consagradas de interpretação visual, com verificação de campo, e indicaram que a classificação automática é viável para o mapeamento de uso da terra na Amazônia. Testes estatísticos indicaram que houve concordância significativa entre as classificações automáticas digitais e o mapa de referência (em tomo de 95% de confiança).
Resumo:
Abstract
Resumo:
El presente trabajo pretende la caracterización de la distribución espacial típica del cultivo de arroz en regadíos del valle del Ebro, donde la presencia del cultivo está ligada a la existencia de suelos salino-sódicos. Esta caracterización ha de permitir identificar las áreas donde es típica la presencia del cultivo año tras año y las áreas donde es frecuente su fluctuación debido tanto a condiciones variables de salinidad del suelo como a variabilidad en las condiciones de mercado. Para ello se ha recurrido al análisis de una serie temporal de mapas de cultivos (7 años) derivados de la clasificación supervisada de imágenes Landsat TM. La determinación de las áreas típicas y de fluctuación del cultivo de arroz se hace entonces a partir del análisis estadístico de clases, y mediante superposición espacial de coberturas en un entorno SIG-Raster.
Resumo:
O objetivo deste estudo foi fazer uma análise da dinâmica da cobertura vegetal de Curitiba, PR, por meio da manipulação de imagens Landsat TM. Para isso, foram utilizadas duas imagens Landsat TM, sendo uma de 2004 e outra de 1986, que foram georreferenciadas, classificadas e processadas, a fim de se obter o mapa de cobertura vegetal das duas datas. Foram analisados aspectos quantitativos, bem como a distribuição da cobertura vegetal pelas regionais administrativas da cidade nas duas datas. A cobertura vegetal diminuiu em todas as regionais, como resultado do crescimento urbano, principalmente nas áreas de menor densidade urbana e maior quantidade de cobertura vegetal. Dessa forma, a urbanização expandiu-se para além das áreas de ocupação tradicionais. A regional que apresentou maior diminuição de cobertura vegetal foi a Pinheirinho e a que teve menor diminuição, a Matriz. Foi possível identificar maior carência de cobertura vegetal justamente nas áreas onde a ocupação urbana se faz mais presente. Tal informação pode ser útil ao planejamento de áreas verdes ou à arborização urbana, contribuindo como subsídio para o direcionamento das ações a serem realizadas, ao indicar potencialidades, vocações, carências e necessidades das diversas regiões da cidade.
Resumo:
This research aims at studying spatial autocorrelation of Landsat/TM based on normalized difference vegetation index (NDVI) and green vegetation index (GVI) of soybean of the western region of the State of Paraná. The images were collected during the 2004/2005 crop season. The data were grouped into five vegetation index classes of equal amplitude, to create a temporal map of soybean within the crop cycle. Moran I and Local Indicators of Spatial Autocorrelation (LISA) indices were applied to study the spatial correlation at the global and local levels, respectively. According to these indices, it was possible to understand the municipality-based profiles of tillage as well as to identify different sowing periods, providing important information to producers who use soybean yield data in their planning.
Resumo:
Algae bloom is one of the major consequences of the eutrophication of aquatic systems, including algae capable of producing toxic substances. Among these are several species of cyanobacteria, also known as blue-green algae, that have the capacity to adapt themselves to changes in the water column. Thus, the horizontal distribution of cyanobacteria harmful algae blooms (CHABs) is essential, not only to the environment, but also for public health. The use of remote sensing techniques for mapping CHABs has been explored by means of bio-optical modeling of phycocyanin (PC), a unique inland waters cyanobacteria pigment. However, due to the small number of sensors with a spectral band of the PC absorption feature, it is difficult to develop semi-analytical models. This study evaluated the use of an empirical model to identify CHABs using TM and ETM+ sensors aboard Landsat 5 and 7 satellites. Five images were acquired for applying the model. Besides the images, data was also collected in the Guarapiranga Reservoir, in São Paulo Metropolitan Region, regarding the cyanobacteria cell count (cells/mL), which was used as an indicator of CHABs biomass. When model values were analyzed excluding calibration factors for temperate lakes, they showed a medium correlation (R²=0.81, p=0.036), while when the factors were included the model showed a high correlation (R²=0.96, p=0.003) to the cyanobacteria cell count. The empirical model analyzed proved useful as an important tool for policy makers, since it provided information regarding the horizontal distribution of CHABs which could not be acquired from traditional monitoring techniques.
Resumo:
"ETL-0589."
Resumo:
This study includes the results of the analysis of areas susceptible to degradation by remote sensing in semi-arid region, which is a matter of concern and affects the whole population and the catalyst of this process occurs by the deforestation of the savanna and improper practices by the use of soil. The objective of this research is to use biophysical parameters of the MODIS / Terra and images TM/Landsat-5 to determine areas susceptible to degradation in semi-arid Paraiba. The study area is located in the central interior of Paraíba, in the sub-basin of the River Taperoá, with average annual rainfall below 400 mm and average annual temperature of 28 ° C. To draw up the map of vegetation were used TM/Landsat-5 images, specifically, the composition 5R4G3B colored, commonly used for mapping land use. This map was produced by unsupervised classification by maximum likelihood. The legend corresponds to the following targets: savanna vegetation sparse and dense, riparian vegetation and exposed soil. The biophysical parameters used in the MODIS were emissivity, albedo and vegetation index for NDVI (NDVI). The GIS computer programs used were Modis Reprojections Tools and System Information Processing Georeferenced (SPRING), which was set up and worked the bank of information from sensors MODIS and TM and ArcGIS software for making maps more customizable. Initially, we evaluated the behavior of the vegetation emissivity by adapting equation Bastiaanssen on NDVI for spatialize emissivity and observe changes during the year 2006. The albedo was used to view your percentage of increase in the periods December 2003 and 2004. The image sensor of Landsat TM were used for the month of December 2005, according to the availability of images and in periods of low emissivity. For these applications were made in language programs for GIS Algebraic Space (LEGAL), which is a routine programming SPRING, which allows you to perform various types of algebras of spatial data and maps. For the detection of areas susceptible to environmental degradation took into account the behavior of the emissivity of the savanna that showed seasonal coinciding with the rainy season, reaching a maximum emissivity in the months April to July and in the remaining months of a low emissivity . With the images of the albedo of December 2003 and 2004, it was verified the percentage increase, which allowed the generation of two distinct classes: areas with increased variation percentage of 1 to 11.6% and the percentage change in areas with less than 1 % albedo. It was then possible to generate the map of susceptibility to environmental degradation, with the intersection of the class of exposed soil with varying percentage of the albedo, resulting in classes susceptibility to environmental degradation
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Remotely sensed imagery has been widely used for land use/cover classification thanks to the periodic data acquisition and the widespread use of digital image processing systems offering a wide range of classification algorithms. The aim of this work was to evaluate some of the most commonly used supervised and unsupervised classification algorithms under different landscape patterns found in Rondônia, including (1) areas of mid-size farms, (2) fish-bone settlements and (3) a gradient of forest and Cerrado (Brazilian savannah). Comparison with a reference map based on the kappa statistics resulted in good to superior indicators (best results - K-means: k=0.68; k=0.77; k=0.64 and MaxVer: k=0.71; k=0.89; k=0.70 respectively for three areas mentioned). Results show that choosing a specific algorithm requires to take into account both its capacity to discriminate among various spectral signatures under different landscape patterns as well as a cost/benefit analysis considering the different steps performed by the operator performing a land cover/use map. it is suggested that a more systematic assessment of several options of implementation of a specific project is needed prior to beginning a land use/cover mapping job.