915 resultados para Lagrangean heuristic
Resumo:
To comply with natural gas demand growth patterns and Europe´s import dependency, the gas industry needs to organize an efficient upstream infrastructure. The best location of Gas Supply Units – GSUs and the alternative transportation mode – by phisical or virtual pipelines, are the key of a successful industry. In this work we study the optimal location of GSUs, as well as determining the most efficient allocation from gas loads to sources, selecting the best transportation mode, observing specific technical restrictions and minimizing system total costs. For the location of GSUs on system we use the P-median problem, for assigning gas demands nodes to source facilities we use the classical transportation problem. The developed model is an optimisation-based approach, based on a Lagrangean heuristic, using Lagrangean relaxation for P-median problems – Simple Lagrangean Heuristic. The solution of this heuristic can be improved by adding a local search procedure - the Lagrangean Reallocation Heuristic. These two heuristics, Simple Lagrangean and Lagrangean Reallocation, were tested on a realistic network - the primary Iberian natural gas network, organized with 65 nodes, connected by physical and virtual pipelines. Computational results are presented for both approaches, showing the location gas sources and allocation loads arrangement, system total costs and gas transportation mode.
Resumo:
A major determinant of the level of effective natural gas supply is the ease to feed customers, minimizing system total costs. The aim of this work is the study of the right number of Gas Supply Units – GSUs - and their optimal location in a gas network. This paper suggests a GSU location heuristic, based on Lagrangean relaxation techniques. The heuristic is tested on the Iberian natural gas network, a system modelized with 65 demand nodes, linked by physical and virtual pipelines. Lagrangean heuristic results along with the allocation of loads to gas sources are presented, using a 2015 forecast gas demand scenario.
Resumo:
In this paper we study the optimal natural gas commitment for a known demand scenario. This study implies the best location of GSUs to supply all demands and the optimal allocation from sources to gas loads, through an appropriate transportation mode, in order to minimize total system costs. Our emphasis is on the formulation and use of a suitable optimization model, reflecting real-world operations and the constraints of natural gas systems. The mathematical model is based on a Lagrangean heuristic, using the Lagrangean relaxation, an efficient approach to solve the problem. Computational results are presented for Iberian and American natural gas systems, geographically organized in 65 and 88 load nodes, respectively. The location model results, supported by the computational application GasView, show the optimal location and allocation solution, system total costs and suggest a suitable gas transportation mode, presented in both numerical and graphic supports.
Resumo:
The best places to locate the Gas Supply Units (GSUs) on a natural gas systems and their optimal allocation to loads are the key factors to organize an efficient upstream gas infrastructure. The number of GSUs and their optimal location in a gas network is a decision problem that can be formulated as a linear programming problem. Our emphasis is on the formulation and use of a suitable location model, reflecting real-world operations and constraints of a natural gas system. This paper presents a heuristic model, based on lagrangean approach, developed for finding the optimal GSUs location on a natural gas network, minimizing expenses and maximizing throughput and security of supply.The location model is applied to the Iberian high pressure natural gas network, a system modelised with 65 demand nodes. These nodes are linked by physical and virtual pipelines – road trucks with gas in liquefied form. The location model result shows the best places to locate, with the optimal demand allocation and the most economical gas transport mode: by pipeline or by road truck.
Resumo:
This paper addresses the independent multi-plant, multi-period, and multi-item capacitated lot sizing problem where transfers between the plants are allowed. This is an NP-hard combinatorial optimization problem and few solution methods have been proposed to solve it. We develop a GRASP (Greedy Randomized Adaptive Search Procedure) heuristic as well as a path-relinking intensification procedure to find cost-effective solutions for this problem. In addition, the proposed heuristics is used to solve some instances of the capacitated lot sizing problem with parallel machines. The results of the computational tests show that the proposed heuristics outperform other heuristics previously described in the literature. The results are confirmed by statistical tests. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper proposes a cluster partitioning technique to calculate improved upper bounds to the optimal solution of maximal covering location problems. Given a covering distance, a graph is built considering as vertices the potential facility locations, and with an edge connecting each pair of facilities that attend a same client. Coupling constraints, corresponding to some edges of this graph, are identified and relaxed in the Lagrangean way, resulting in disconnected subgraphs representing smaller subproblems that are computationally easier to solve by exact methods. The proposed technique is compared to the classical approach, using real data and instances from the available literature. © 2010 Edson Luiz França Senne et al.
Resumo:
Traffic conflicts at railway junctions are very conmon, particularly on congested rail lines. While safe passage through the junction is well maintained by the signalling and interlocking systems, minimising the delays imposed on the trains by assigning the right-of-way sequence sensibly is a bonus to the quality of service. A deterministic method has been adopted to resolve the conflict, with the objective of minimising the total weighted delay. However, the computational demand remains significant. The applications of different heuristic methods to tackle this problem are reviewed and explored, elaborating their feasibility in various aspects and comparing their relative merits for further studies. As most heuristic methods do not guarantee a global optimum, this study focuses on the trade-off between computation time and optimality of the resolution.
Resumo:
Station track allocation is the critical component in the overall railway timetabling. Because of its intrinsic complexity and lack of modeling on station track layouts and train movement within station, analytical approach to attain optimal solution is not feasible. This study investigates the possibilities of applying a heuristic approach and identifies possible difficulties in practice. It is the first and important step to resolve one of the burning issues in the mainline railway operation in China.
Resumo:
This paper proposes a train movement model with fixed runtime that can be employed to find feasible control strategies for a single train along an inter-city railway line. The objective of the model is to minimize arrival delays at each station along railway lines. However, train movement is a typical nonlinear problem for complex running environments and different requirements. A heuristic algorithm is developed to solve the problem in this paper and the simulation results show that the train could overcome the disturbance from train delay and coordinates the operation strategies to sure punctual arrival of trains at the destination. The developed algorithm can also be used to evaluate the running reliability of trains in scheduled timetables.
Resumo:
This article reports on the design and implementation of a computer-aided sheet nesting system (CASNS) for the nesting of two-dimensional irregular-shaped sheet-metal blanks on a given sheet stock or coil stock. The system is designed by considering several constraints of sheet-metal stamping operations, such as bridge width and grain orientation, and design requirements such as maximizing the strength of the part hen subsequent bending is involved, minimization of scrap, and economic justification for'a single or multiple station operation. Through many practical case studies, the system proves its efficiency, effectiveness and usefulness.
Resumo:
Railway crew scheduling problem is the process of allocating train services to the crew duties based on the published train timetable while satisfying operational and contractual requirements. The problem is restricted by many constraints and it belongs to the class of NP-hard. In this paper, we develop a mathematical model for railway crew scheduling with the aim of minimising the number of crew duties by reducing idle transition times. Duties are generated by arranging scheduled trips over a set of duties and sequentially ordering the set of trips within each of duties. The optimisation model includes the time period of relief opportunities within which a train crew can be relieved at any relief point. Existing models and algorithms usually only consider relieving a crew at the beginning of the interval of relief opportunities which may be impractical. This model involves a large number of decision variables and constraints, and therefore a hybrid constructive heuristic with the simulated annealing search algorithm is applied to yield an optimal or near-optimal schedule. The performance of the proposed algorithms is evaluated by applying computational experiments on randomly generated test instances. The results show that the proposed approaches obtain near-optimal solutions in a reasonable computational time for large-sized problems.
Resumo:
Since the 1970s, the Uppsala stages model has been one of the dominant explanations of firm internationalization. The model's focus on internationalization as a firm's gradual and incremental process of increasing international involvement has attracted much debate, with one criticism being that it is unclear in explaining how the internationalization process first originates within a firm. In this paper, the Uppsala model is extended through the incorporation of a pre-internationalization phase to explore the antecedents of firm internationalization. Adopting the Uppsala model's theoretical underpinnings, this paper develops and operationalizes a pre-internationalization phase decision heuristic in the form of an ‘export readiness index'. Four constructs are proposed that drive and inhibit export commencement decision-making during a firm's preinternationalization phase: export stimuli, attitudinal/psychological commitment, resources and lateral rigidity. Through a survey of Australian exporting and non-exporting small-medium sized enterprises (SMEs), the Export Readiness Index (ERI) is developed through factor analysis and tested using logistic regression. Results of the study and their potential implications are discussed.
Resumo:
The placement of the mappers and reducers on the machines directly affects the performance and cost of the MapReduce computation in cloud computing. From the computational point of view, the mappers/reducers placement problem is a generalization of the classical bin packing problem, which is NP-complete. Thus, in this paper we propose a new heuristic algorithm for the mappers/reducers placement problem in cloud computing and evaluate it by comparing with other several heuristics on solution quality and computation time by solving a set of test problems with various characteristics. The computational results show that our heuristic algorithm is much more efficient than the other heuristics. Also, we verify the effectiveness of our heuristic algorithm by comparing the mapper/reducer placement for a benchmark problem generated by our heuristic algorithm with a conventional mapper/reducer placement. The comparison results show that the computation using our mapper/reducer placement is much cheaper while still satisfying the computation deadline.
Resumo:
Much has been written about transferring class materials and teaching techniques to digital platforms, but less has been written about applying heuristic organizing constructs in the same manner. With the transformation of learning ecologies over the past decades as well as requirements to adjust to constantly shifting digital tools and environments, the challenges for learning facilitators are to readily adapt and change, as well as to engage a changing learner demographic. However, most importantly is to engage most effectively with learners in these online environments. This article reviews the existing literature in the heuristic construct of academagogy [1] and applies a case study methodology to discussion of the first application of academagogy to the online delivery of an undergraduate design unit. Through a focus on effective teaching and learning techniques, the transfer from face-to-face (f2f) to the digital realm is explored through four main focal points: Tools for teaching, teaching and learning, communicating with students, and effective teaching methods. These four focal points are then used to discuss ways to meet the challenges of teaching online including how they create new dimensions in teaching practice and how the digital experience changes learning experiences. The article concludes with reflection and consolidation of the similarities and differences between the face-to-face and digital deliveries, and by suggesting changes to the academagogic heuristic to enable its use more easily in a digital space.