922 resultados para Lagrange interpolation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today finite element method is a well established tool in engineering analysis and design. Though there axe many two and three dimensional finite elements available, it is rare that a single element performs satisfactorily in majority of practical problems. The present work deals with the development of 4-node quadrilateral element using extended Lagrange interpolation functions. The classical univariate Lagrange interpolation is well developed for 1-D and is used for obtaining shape functions. We propose a new approach to extend the Lagrange interpolation to several variables. When variables axe more than one the method also gives the set of feasible bubble functions. We use the two to generate shape function for the 4-node arbitrary quadrilateral. It will require the incorporation of the condition of rigid body motion, constant strain and Navier equation by imposing necessary constraints. The procedure obviates the need for isoparametric transformation since interpolation functions are generated for arbitrary quadrilateral shapes. While generating the element stiffness matrix, integration can be carried out to the accuracy desired by dividing the quadrilateral into triangles. To validate the performance of the element which we call EXLQUAD4, we conduct several pathological tests available in the literature. EXLQUAD4 predicts both stresses and displacements accurately at every point in the element in all the constant stress fields. In tests involving higher order stress fields the element is assured to converge in the limit of discretisation. A method thus becomes available to generate shape functions directly for arbitrary quadrilateral. The method is applicable also for hexahedra. The approach should find use for development of finite elements for use with other field equations also.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): G.1.1, G.1.2.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work explores the suitability of the Lagrange interpolating polynomial as a tool to estimate and correct solar databases. From the knowledge of the irradiance distribution over a day, a portion of it was removed for applying Lagrange interpolation polynomial. After generation of the estimates by interpolation, the assessment was made by MBE and RMSE statistical indicators. The application of Lagrange interpolating generated the following results: underestimation of 0.27% (MBE = -1.83 W/m2) and scattering of 0.51% (RMSE = 3.48 W/m2).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present two unconditional secure protocols for private set disjointness tests. In order to provide intuition of our protocols, we give a naive example that applies Sylvester matrices. Unfortunately, this simple construction is insecure as it reveals information about the intersection cardinality. More specifically, it discloses its lower bound. By using the Lagrange interpolation, we provide a protocol for the honest-but-curious case without revealing any additional information. Finally, we describe a protocol that is secure against malicious adversaries. In this protocol, a verification test is applied to detect misbehaving participants. Both protocols require O(1) rounds of communication. Our protocols are more efficient than the previous protocols in terms of communication and computation overhead. Unlike previous protocols whose security relies on computational assumptions, our protocols provide information theoretic security. To our knowledge, our protocols are the first ones that have been designed without a generic secure function evaluation. More important, they are the most efficient protocols for private disjointness tests in the malicious adversary case.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present efficient protocols for private set disjointness tests. We start from an intuition of our protocols that applies Sylvester matrices. Unfortunately, this simple construction is insecure as it reveals information about the cardinality of the intersection. More specifically, it discloses its lower bound. By using the Lagrange interpolation we provide a protocol for the honest-but-curious case without revealing any additional information. Finally, we describe a protocol that is secure against malicious adversaries. The protocol applies a verification test to detect misbehaving participants. Both protocols require O(1) rounds of communication. Our protocols are more efficient than the previous protocols in terms of communication and computation overhead. Unlike previous protocols whose security relies on computational assumptions, our protocols provide information theoretic security. To our knowledge, our protocols are first ones that have been designed without a generic secure function evaluation. More importantly, they are the most efficient protocols for private disjointness tests for the malicious adversary case.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents a finite element-based strategy for exterior acoustical problems based on an assumed pressure form that favours outgoing waves. The resulting governing equation, weak formulation, and finite element formulation are developed both for coupled and uncoupled problems. The developed elements are very similar to conventional elements in that they are based on the standard Galerkin variational formulation and use standard Lagrange interpolation functions and standard Gaussian quadrature. In addition and in contrast to wave envelope formulations and their extensions, the developed elements can be used in the immediate vicinity of the radiator/scatterer. The method is similar to the perfectly matched layer (PML) method in the sense that each layer of elements added around the radiator absorbs acoustical waves so that no boundary condition needs to be applied at the outermost boundary where the domain is truncated. By comparing against strategies such as the PML and wave-envelope methods, we show that the relative accuracy, both in the near and far-field results, is considerably higher.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new high-order finite volume method based on local reconstruction is presented in this paper. The method, so-called the multi-moment constrained finite volume (MCV) method, uses the point values defined within single cell at equally spaced points as the model variables (or unknowns). The time evolution equations used to update the unknowns are derived from a set of constraint conditions imposed on multi kinds of moments, i.e. the cell-averaged value and the point-wise value of the state variable and its derivatives. The finite volume constraint on the cell-average guarantees the numerical conservativeness of the method. Most constraint conditions are imposed on the cell boundaries, where the numerical flux and its derivatives are solved as general Riemann problems. A multi-moment constrained Lagrange interpolation reconstruction for the demanded order of accuracy is constructed over single cell and converts the evolution equations of the moments to those of the unknowns. The presented method provides a general framework to construct efficient schemes of high orders. The basic formulations for hyperbolic conservation laws in 1- and 2D structured grids are detailed with the numerical results of widely used benchmark tests. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let (a, b) subset of (0, infinity) and for any positive integer n, let S-n be the Chebyshev space in [a, b] defined by S-n:= span{x(-n/2+k),k= 0,...,n}. The unique (up to a constant factor) function tau(n) is an element of S-n, which satisfies the orthogonality relation S(a)(b)tau(n)(x)q(x) (x(b - x)(x - a))(-1/2) dx = 0 for any q is an element of Sn-1, is said to be the orthogonal Chebyshev S-n-polynomials. This paper is an attempt to exibit some interesting properties of the orthogonal Chebyshev S-n-polynomials and to demonstrate their importance to the problem of approximation by S-n-polynomials. A simple proof of a Jackson-type theorem is given and the Lagrange interpolation problem by functions from S-n is discussed. It is shown also that tau(n) obeys an extremal property in L-q, 1 less than or equal to q less than or equal to infinity. Natural analogues of some inequalities for algebraic polynomials, which we expect to hold for the S-n-pelynomials, are conjectured.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A method has been constructed for the solution of a wide range of chemical plant simulation models including differential equations and optimization. Double orthogonal collocation on finite elements is applied to convert the model into an NLP problem that is solved either by the VF 13AD package based on successive quadratic programming, or by the GRG2 package, based on the generalized reduced gradient method. This approach is termed simultaneous optimization and solution strategy. The objective functional can contain integral terms. The state and control variables can have time delays. Equalities and inequalities containing state and control variables can be included into the model as well as algebraic equations and inequalities. The maximum number of independent variables is 2. Problems containing 3 independent variables can be transformed into problems having 2 independent variables using finite differencing. The maximum number of NLP variables and constraints is 1500. The method is also suitable for solving ordinary and partial differential equations. The state functions are approximated by a linear combination of Lagrange interpolation polynomials. The control function can either be approximated by a linear combination of Lagrange interpolation polynomials or by a piecewise constant function over finite elements. The number of internal collocation points can vary by finite elements. The residual error is evaluated at arbitrarily chosen equidistant grid-points, thus enabling the user to check the accuracy of the solution between collocation points, where the solution is exact. The solution functions can be tabulated. There is an option to use control vector parameterization to solve optimization problems containing initial value ordinary differential equations. When there are many differential equations or the upper integration limit should be selected optimally then this approach should be used. The portability of the package has been addressed converting the package from V AX FORTRAN 77 into IBM PC FORTRAN 77 and into SUN SPARC 2000 FORTRAN 77. Computer runs have shown that the method can reproduce optimization problems published in the literature. The GRG2 and the VF I 3AD packages, integrated into the optimization package, proved to be robust and reliable. The package contains an executive module, a module performing control vector parameterization and 2 nonlinear problem solver modules, GRG2 and VF I 3AD. There is a stand-alone module that converts the differential-algebraic optimization problem into a nonlinear programming problem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The classical Kramer sampling theorem, which provides a method for obtaining orthogonal sampling formulas, can be formulated in a more general nonorthogonal setting. In this setting, a challenging problem is to characterize the situations when the obtained nonorthogonal sampling formulas can be expressed as Lagrange-type interpolation series. In this article a necessary and sufficient condition is given in terms of the zero removing property. Roughly speaking, this property concerns the stability of the sampled functions on removing a finite number of their zeros.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The classical Kramer sampling theorem provides a method for obtaining orthogonal sampling formulas. In particular, when the involved kernel is analytic in the sampling parameter it can be stated in an abstract setting of reproducing kernel Hilbert spaces of entire functions which includes as a particular case the classical Shannon sampling theory. This abstract setting allows us to obtain a sort of converse result and to characterize when the sampling formula associated with an analytic Kramer kernel can be expressed as a Lagrange-type interpolation series. On the other hand, the de Branges spaces of entire functions satisfy orthogonal sampling formulas which can be written as Lagrange-type interpolation series. In this work some links between all these ideas are established.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper a new class of Kramer kernels is introduced, motivated by the resolvent of a symmetric operator with compact resolvent. The article gives a necessary and sufficient condition to ensure that the associ- ated sampling formula can be expressed as a Lagrange-type interpolation series. Finally, an illustrative example, taken from the Hamburger moment problem theory, is included.