902 resultados para LLDPE Blends


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dept. of Polymer Science and Rubber Technology, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A poly(butylene terephthalate) (PBT)/linear low-density polyethylene (LLDPE) alloy was prepared with a reactive extrusion method, For improved compatibility of the blending system, LLDPE grafted with acrylic acid (LLDPE-g-AA) by radiation was adopted in place of plain LLDPE. The toughness and extensibility of the PBT/LLDPE-g-AA blends, as characterized by the impact strengths and elongations at break, were much improved in comparison with the toughness and extensibility of the PBT/LLDPE blends at the same compositions. However, there was not much difference in their tensile (or flexural) strengths and moduli. Scanning electron microscopy photographs showed that the domains of PBT/LLDPE-g-AA were much smaller and their dispersions were more homogeneous than the domains and dispersions of the PBT/ T,T PE blends. Compared with the related values of the PBT/LLDPE blends, the contents and melting temperatures of the usual spherulites of PBT in PBT/LLDPE-g-AA decreased.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Studies on melt rheological properties of blends of low density polyethylene (LDPE) with selected grades of linear low density polyethylene (LLDPE), which differ widely in their melt flow indices, are reported, The data obtained in a capillary rheometer are presented to describe the effects of blend composition and shear rate on flow behavior index, melt viscosity, and melt elasticity. In general, blending of LLDPE I that has a low melt flow index (2 g/10 min) with LDPE results in a decrease of its melt viscosity, processing temperature, and the tendency of extrudate distortion, depending on blending ratio. A blending ratio around 20-30% LLDPE I seems optimum from the point of view of desirable improvement in processability behavior. On the other hand, blending of LLDPE II that has a high melt flow index (10 g/10 min) with LDPE offers a distinct advantage in increasing the pseudoplasticity of LDPE/LLDPE II blends.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The reactive compatibilization of LLDPE/PS (50/50 wt%) was achieved by Friedel-Crafts alkylation reaction with a combined Lewis acids (Me3SiCl and InCl3 center dot 4H(2)O) as catalyst. The graft copolymer at the interface was characterized by Fourier transform infrared spectroscopy and the morphology of the blends was analysized by scanning electron microscopy. It was found that the combined Lewis acids had catalytic effect on Friedel-Crafts alkylation reaction between LLDPE and PS, and the catalytic effect was maximal when the molar ratio of InCl3 center dot 4H(2)O to Me3SiCl was 1:5. The graft copolymer LLDPE-g-PS was formed via the F-C reaction and worked as a tailor-made compatibilizer to reduce the interfacial tension. The mechanical properties of reactive blend with combined Lewis acids as catalyst was notably improved compared to that of physical LLDPE/PS blend and serious degradation had been decreased compared to the reactive blend system with AlCl3 as catalyst; we interpreted the above results in term of acidity of combined Lewis acids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The rheological, morphological and mechanical properties of LLDPE/PS blends with a combined catalyst, Me3SiCl and InCl3 center dot 4H(2)O, were studied in this work. The higher complex viscosity and storage modulus at low frequency were ascribed to the presence of graft copolymers, which were in situ formed during the mixing process. From the rheological experiments, the complex viscosity and storage modulus of reactive blends were higher than the physical blends. The dispersion of LLDPE particles of reactive blending becomes finer than that of physical blends, consistent with the rheological results. As a result of increased compatibility between LLDPE/PS, the mechanical properties of reactive blends show much higher tensile and Izod impact strength than those of physical blends.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Blends of linear low-density polyethylene (LLDPE) and poly(ethylene-co-methacrylic acid) (EMA) random copolymer were studied by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and excimer fluorescence. In binary blends, crystallization of EMA was studied, and no modification of crystal structure was detected. In excimer fluorescence measurements, emission intensities of blends of EMA and naphthalene-labeled LLDPE were measured. The ratio of the excimer emission intensity (I-D) to the emission intensity of the isolated "monomer" (I-M) decreases upon addition of EMA, indicating that PE segments of EMA interpenetrate into the amorphous phase of LLDPE. (C) 1998 Published by Elsevier Science Ltd,. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Compatibilization of blends of Linear low-density polyethylene (LLDPE)-poly(methyl methacrylate) (PMMA) and LLDPE-copolymer of methyl methacrylate (MMA) and 4-vinylpyridine (poly(MMA-co-4VP) with poly(ethylene-co-methacrylic acid) (EMAA) have been studied. Mechanical properties of the LLDPE-PMMA blends increase upon addition of EMAA. In order to further improve interfacial adhesion of LLDPE and PMMA, 4-vinyl pyridine units are introduced into PMMA chains, or poly(MMA-co-4VP) is used as the polar polymer. In LLDPE-poly(MMA-co-4VP)-EMAA blends, interaction of MAA in EMAA with 4VP of poly(MMA-co-4VP) causes a band shift in the infrared (IR) spectra. Chemical shifts of N-1s binding energy in X-ray photoelectronic spectroscopy (XPS) experiments indicate a transfer of proton from MAA to 4VP. Scanning electron microscopy (SEM) pictures show that the morphology of the blends were improved upon addition of EMAA. Nonradiative energy transfer (NRET) fluorescence results attest that there exists interdiffusion of chromophore-labeled LLDPE chains and chromophore-labeled poly(MMA-co-4VP) chains in the interface. Based on experimental results, the mechanism of compatibilization is studied in detail. Compatibilization is realized through the interaction between MAA in EMAA with 4VP in poly(MMA-co-4VP). (C) 1999 John Wiley & Sons, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The compatibilizing effects of the compatibilizer, ethylene-acrylic acid random copolymer (EAA), on linear low density polyethylene (LLDPE)/poly(ethylene oxide) (PEO) blends and the mechanism of compatibilization of the blends have been studied. Morphology and microstructures as characterized by SEM, DMA, DSC and IR show that EAA can act as an effective compatibilizer, and the mechanism of compatibilization is due to the compatibility of amorphous phases between EAA and LLDPE, and intermolecular interaction between the carboxylic groups in EAA. and the ethereal oxygens in PEG.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

compatibilizing effect of graft copolymer, linear low density polyethylene-g-polystyrene (LLDPE-g-PS), on immiscible blends of LLDPE with styrene-butadiene-styrene triblock copolymer (SBS) has been investigated by means of C-13 CPMAS n.m.r. and d.s.c. techniques. The results indicate that LLDPE-g-PS is an effective compatibilizer for LLDPE/SBS blends. It was found that LLDPE-g-PS chains connect two immiscible components, LLDPE and SBS, through solubilization of chemically identical segments of LLDPE-g-PS into the amorphous region of LLDPE acid PS block domain of SBS, respectively. It was also found that LLDPE-g-PS chains connect the crystalline region of LLDPE by isomorphism, with serious effects on the supermolecular structure of LLDPE. The effect of LLDPE-g-PS on the supermolecular structure of LLDPE in the LLDPE/SBS blends obviously depends on the composition of the blends, but has little dependence on the PS grafting yields of LLDPE-g-PS. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used to study the miscibility of blends of a graft copolymer of poly(methyl methacrylate) on linear low density polyethylene (LLDPE-g-PMMA, G-3) with poly(vinylidene fluoride)(b) (PVF2) and the compatibilization of blends of LLDPE/PVF2. The specific interaction between PMMA side chains and PVF2 in G-3/PVF2 binary blends is weaker than that between the homopolymers PMMA and PVF2. There are two states of PVF2 in the melt of a G-3/PVF2 (60/40, w/w) blend, one as pure PVF2 and the other interacting with PMMA side chains. The miscibility between PMMA side chains and PVF2 affects the crystallization of PVF2. LLDPE-g-PMMA was demonstrated to be a good compatibilizer in LLDPE/PVF2 blends, improving the interfacial adhesion and dispersion in the latter. Diffusion of PMMA side chains into PVF2 in the interfacial region reduces the crystallization rate and lowers the melting point (T-m) and the crystallization temperature (T-c) of PVF2 in the blends.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The compatibilizing effect of graft copolymer, linear low density polyethylene-g-polystyrene (LLDPE-g-PS), on immiscible LLDPE/PS blends has been studied by means of C-13 CP-MAS NMR and DSC techniques. The results indicate that LLDPE-g-PS is an effective compatibilizer for LLDPE/PS blends, and the compatibilizing effect of LLDPE-g-PS on LLDPE/PS blends depends on the PS grafting yield and molecular structure of the compatibilizers and also on the composition of the blends. It was found that LLDPE-g-PS chains connect two immiscible components, LLDPE and PS, through solubilization of chemically identical segments of LLDPE-g-PS into the noncrystalline region of the LLDPE and PS domain, respectively. Meanwhile, LLDPE-g-PS chains connect the crystalline region of LLDPE by isomorphism, resulting in an obvious change in the crystallization behavior of LLDPE. (C) 1996 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

本文以单组分和双组分Lewis酸为催化剂,采用反应加工的方法,制备了原位反应增容的线性低密度聚乙烯/聚苯乙烯共混物(LLDPE/PS),并对原位反应增容的机理、增容体系的结构性能以及Lewis酸对共混组分的降解作用进行了系统研究。 以FTIR和NMR为手段、二甲苯为模拟化合物,确认LLDPE/PS共混体系在Lewis酸为催化剂作用下发生了LLDPE与PS的接枝反应,LLDPE接枝在PS苯环的对位上。形成的原位接枝共聚物对体系起增容作用。 使用溶剂抽提、SEM、DMA、流变和DSC等手段对以单组分Lewis酸AlCl3 为催化剂的LLDPE/PS共混物的结构性能进行了研究。从溶剂抽提前后的重量比计算了接枝物的含量。催化剂用量较低时体系中的接枝物含量随AlCl3的增加而提高,随着AlCl3进一步增加,接枝物含量不会增加反而下降,发现AlCl3导致均聚物的降解。研究结果表明,共混体系中加入适量的AlCl3催化剂后,分散相尺寸减小,分布均匀,储能模量增加,低频区的复数黏度升高。但AlCl3用量过高时使共混物的分散相尺寸增加,分布均匀度下降,储能模量和复数黏度降低。以GPC为手段研究了单组分 Lewis酸AlCl3对共混组分的降解作用,发现对PS的降解作用显著。 由于单组分Lewis酸催化剂会导致共混组分降解,使共混体系的物理机械性能变劣,为此,我们在LLDPE/PS共混物中引入了双组分Lewis酸催化剂(Me3SiCl、InCl3•4H2O)。结果表明双组分Lewis酸催化剂不但能够催化LLDPE和PS的原位接枝反应,获得高性能的LLDPE/PS合金材料,而且不会引发共混组分PS的降解。在催化剂用量固定时,采用双组分催化剂时共混物的拉伸强度随着LLDPE含量的增加几乎保持不变,但冲击强度有十分明显的提高。对比了加入催化剂前后共混物形貌的变化,增容后的共混物中分散相粒子尺寸显著降低,证明了双Lewis酸良好的催化性能。 对以双Lewis酸为催化剂的共混物的流变行为和结晶行为进行了研究。随着催化剂的加入,两相之间的相互作用增强,因此共混物的复数黏度,储能模量和损耗模量都有不同程度的提高。增容后的LLDPE相区变小,因而在冷却过程中出现不同程度的分步结晶现象。 对单组分和双组分Lewis酸催化剂原位反应增容LLDPE/PS共混体系的机理进行了探讨。机理为Friedel-Crafts烷基化反应。在采用单组分Lewis酸催化剂时, AlCl3与体系中含有的微量水等杂质发生反应,形成一个复合物,然后进一步与聚乙烯中的不饱和的双键发生反应形成碳正离子,并攻击LLDPE分子链从而形成大分子的碳正离子LLDPE+,而这些LLDPE+则通过电子的重排而发生剪切断裂。在催化剂的存在下,这些断裂的LLDPE片断取代PS中的苯环上的质子而发生接枝反应,从而形成LLDPE-g-PS共聚物。采用双组分Lewis酸催化剂时,首先发生双Lewis酸的耦合;耦合后的Lewis酸与水等杂质反应生成复合物,然后与非饱和的LLDPE分子反应生成初级碳正离子;初级碳正离子进攻LLDPE主链,生成较大的碳正离子;LLDPE+碳正离子取代PS苯环对位的质子而生成接枝共聚物。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method was adopted to fix a series of polymers of PE-b-PEO with different PEO/PE segments on the chains of LLDPE. Maleic anhydride (MA) reacting with hydroxyl group of PE-b-PEO (mPE-b-PEO) was used as the intermediate. The structures of intermediates and graft copolymers were approved by H-1 NMR and FTIR. XPS analysis revealed a great amount of oxygen on the surface of grafted copolymers although the end group of PEO was fixed on the LLDPE chains through MA. Thermal properties of the graft copolymers as determined by differential scanning calorimetry (DSC) showed that PE segments in the grafted monomers could promote the heterogeneous nucleation of the polymer, increase T., and crystal growth rate.