991 resultados para LINE FORMATION
Resumo:
Massive young stellar objects (YSOs) are powerful infrared Hi line emitters. It has been suggested that these lines form in an outflow from a disc surrounding the YSO. Here, new two-dimensional Monte Carlo radiative transfer calculations are described which test this hypothesis. Infrared spectra are synthesized for a YSO disc wind model based on earlier hydrodynamical calculations. The model spectra are in qualitative agreement with the observed spectra from massive YSOs, and therefore provide support for a disc wind explanation for the Hi lines. However, there are some significant differences: the models tend to overpredict the Bra/Br? ratio of equivalent widths and produce line profiles which are slightly too broad and, in contrast to typical observations, are double-peaked. The interpretation of these differences within the context of the disc wind picture and suggestions for their resolution via modifications to the assumed disc and outflow structure are discussed. © 2005 RAS.
Resumo:
We investigate line formation processes in Type IIb supernovae (SNe) from 100 to 500 days post-explosion using spectral synthesis calculations. The modelling identifies the nuclear burning layers and physical mechanisms that produce the major emission lines, and the diagnostic potential of these. We compare the model calculations with data on the three best observed Type IIb SNe to-date - SN 1993J, SN 2008ax, and SN 2011dh. Oxygen nucleosynthesis depends sensitively on the main-sequence mass of the star and modelling of the [O I] lambda lambda 6300, 6364 lines constrains the progenitors of these three SNe to the M-ZAMS = 12-16 M-circle dot range (ejected oxygen masses 0.3-0.9 M-circle dot), with SN 2011dh towards the lower end and SN 1993J towards the upper end of the range. The high ejecta masses from M-ZAMS greater than or similar to 17 M-circle dot progenitors give rise to brighter nebular phase emission lines than observed. Nucleosynthesis analysis thus supports a scenario of low-to-moderate mass progenitors for Type IIb SNe, and by implication an origin in binary systems. We demonstrate how oxygen and magnesium recombination lines may be combined to diagnose the magnesium mass in the SN ejecta. For SN 2011dh, a magnesium mass of 0.02-0.14 M-circle dot is derived, which gives a Mg/O production ratio consistent with the solar value. Nitrogen left in the He envelope from CNO burning gives strong [N II] lambda lambda 6548, 6583 emission lines that dominate over Ha emission in our models. The hydrogen envelopes of Type IIb SNe are too small and dilute to produce any noticeable H alpha emission or absorption after similar to 150 days, and nebular phase emission seen around 6550 angstrom is in many cases likely caused by [N II] lambda lambda 6548, 6583. Finally, the influence of radiative transport on the emergent line profiles is investigated. Significant line blocking in the metal core remains for several hundred days, which affects the emergent spectrum. These radiative transfer effects lead to early-time blueshifts of the emission line peaks, which gradually disappear as the optical depths decrease with time. The modelled evolution of this effect matches the observed evolution in SN 2011dh.
Resumo:
Mitochondria are inherited maternally in most metazoans. However, in some bivalves, two mitochondrial lineages are present: one transmitted through eggs (F), the other through sperm (M). This is called Doubly Uniparental Inheritance (DUI). During male embryo development, spermatozoon mitochondria aggregate and end up in the primordial germ cells, while they are dispersed in female embryos. The molecular mechanisms of segregation patterns are still unknown. In the DUI species Ruditapes philippinarum, I examined sperm mitochondria distribution by MitoTracker, microtubule staining and TEM, and I localized germ line determinants with immunocytochemical analysis. I also analyzed the gonad transcriptome, searching for genes involved in reproduction and sex determination. Moreover, I analyzed an M-type specific open reading frame that could be responsible for maintenance/degradation of M mitochondria during embryo development. These transcripts were also localized in tissues using in situ hybridization. As in Mytilus, two distribution patterns of M mitochondria were detected in R. philippinarum, supporting that they are related to DUI. Moreover, the first division midbody concurs in positioning aggregated M mitochondria on the animal-vegetal axis of the male embryo: in organisms with spiral segmentation this zone is not involved in further cleavages, so aggregation is maintained. Moreover, sperm mitochondria reach the same embryonic area where germ plasm is transferred, suggesting their contribution in male germ line formation. The finding of reproduction and ubiquitination transcripts led to formulate a model in which ubiquitination genes stored in female oocytes during gametogenesis would activate sex-gene expression in the early embryonic developmental stages (preformation). Only gametogenetic cells were labeled by in situ hybridization, proving their specific transcription in developing gametes. Other than having a role in sex determination, some ubiquination factors could also be involved in mitochondrial inheritance, and their differential expression could be responsible for the different fate of sperm mitochondria in the two sexes.
Flow-through room temperature phosphorescence optosensing for the determination of lead in sea water
Resumo:
The chelates formed between the heavy metal ion Pb(II) and the reagents 8-hydroxy-5-quinolinesulphonic acid, 8-hydroxy-7-quinolinesulphonic acid and 8-hydroxy-7-iodo-5-quinolinesulphonic acid exhibit strong room temperature phosphorescence (RTP) if retained on the surface of anion exchange resin beads. Based on the on-line formation, in a flow-injection system, of such RTP lead chelates and their transient immobilization on an anion exchange resin, three flow-through optosensing systems are investigated for lead in sea water. Optimum experimental conditions and the analytical performance characteristics of the three optosensors are discussed. Relative standard deviations (RSDs) of the order of 3% are typical at 100 ng ml−1 Pb(II) and the active sensing phases can easily be regenerated by passing 500 μl of 6 M hydrochloric acid. A lead(II) detection limit of 0.1 ng ml−1 (3×background SD, for 2 ml sample injection volumes) was achieved for the optosensor based on 8-hydroxy-7-quinolinesulphonic acid. Possible interferences present in sea water, including cations and anions which could affect the sensor response, are discussed in detail. Finally, the selected RTP flow-through optical sensor has been successfully tested for the determination of lead in sea water at a few ng ml−1.
Resumo:
Very-high-resolution (R~160000) spectroscopic observations are presented for the early B-type star, HD83206. Because it has very sharp metal lines, this star affords an opportunity to test theories of model atmospheres and line formation. Non-LTE model atmosphere calculations have been used to estimate the atmospheric parameters and absolute metal abundances (C, N, O, Mg and Si); an LTE analysis was also undertaken to investigate the validity of this simpler approach and to estimate an iron abundance. For the non-LTE calculations, there is excellent agreement with observations of the Balmer lines Ha and Hd and the lines of Siii and Siiii for atmospheric parameters of Teff~=21700+/-600K and logg~=4.00+/-0.15dex. The agreement is less convincing for the LTE calculations, and a higher gravity is deduced. Careful comparison of the metal line profiles with non-LTE calculations implies that the projected rotational and microturbulent velocities have maximum values of ~=5 and ~=2kms-1, respectively. The latter value is smaller than has often been adopted in LTE model atmosphere analyses of main-sequence stars. Non-LTE absolute metal abundances are estimated, and a comparison with those for normal B-type stars (deduced using similar non-LTE techniques) shows no significant differences. A comparison of the abundances deduced using non-LTE and LTE calculations implies systematic differences of 0.1-0.2dex, showing the importance of using a non-LTE approach when accurate absolute abundances are required. Its location in the Hertzsprung-Russell diagram and normal metal abundance lead us to conclude that HD83206 is probably a main-sequence B-type star. As such, it is among the sharpest-lined young B-type star discovered to date.
Resumo:
A Monte Carlo code (artis) for modelling time-dependent three-dimensional spectral synthesis in chemically inhomogeneous models of Type Ia supernova ejecta is presented. Following the propagation of ?-ray photons, emitted by the radioactive decay of the nucleosynthesis products, energy is deposited in the supernova ejecta and the radiative transfer problem is solved self-consistently, enforcing the constraint of energy conservation in the comoving frame. Assuming a photoionization-dominated plasma, the equations of ionization equilibrium are solved together with the thermal balance equation adopting an approximate treatment of excitation. Since we implement a fully general treatment of line formation, there are no free parameters to adjust. Thus, a direct comparison between synthetic spectra and light curves, calculated from hydrodynamic explosion models, and observations is feasible. The code is applied to the well-known W7 explosion model and the results tested against other studies. Finally, the effect of asymmetric ejecta on broad-band light curves and spectra is illustrated using an elliptical toy model. © 2009 RAS.
Resumo:
Infrared water line emission from protoplanetary disks, recently observed by the Spitzer and Herschel space telescopes, is thought to trace the surface layer of the inner to outer regions of the disks. We have modelled the water abundance profile and line emission, especially focusing on the effects of dust size growth and turbulent mixing. Comparison between model calculations and observations suggests a small grain model with turbulent mixing is preferred. Copyright © International Astronomical Union 2014.
Resumo:
SN 2012ec is a Type IIP supernova (SN) with a progenitor detection and comprehensive photospheric phase observational coverage. Here, we present Very Large Telescope and Public ESO Spectroscopic Survey of Transient Objects observations of this SN in the nebular phase. We model the nebular [O I] lambda lambda 6300, 6364 lines and find their strength to suggest a progenitor main-sequence mass of 13-15 M-circle dot. SN2012ec is unique among hydrogen-rich SNe in showing a distinct line of stable nickel [Ni II] lambda 7378. This line is produced by Ni-58, a nuclear burning ash whose abundance is a sensitive tracer of explosive burning conditions. Using spectral synthesis modelling, we use the relative strengths of [Ni II] lambda 7378 and [Fe II] lambda 7155 (the progenitor of which is Ni-56) to derive a Ni/Fe production ratio of 0.20 +/- 0.07 (by mass), which is a factor 3.4 +/- 1.2 times the solar value. High production of stable nickel is confirmed by a strong [Ni II] 1.939 mu m line. This is the third reported case of a core-collapse SN producing a Ni/Fe ratio far above the solar value, which has implications for core-collapse explosion theory and galactic chemical evolution models.
Resumo:
The Fe unresolved transition arrays (UTAs) produce prominent features in the 15-17 Å wavelength range in the spectra of active galactic nuclei (AGNs). Here, we present new calculations of the energies and oscillator strengths of inner-shell lines from Fe XIV, Fe XV, and Fe XVI. These are crucial ions since they are dominant at inflection points in the gas thermal stability curve, and UTA excitation followed by autoionization is an important ionization mechanism for these species. We incorporate these, and data reported in previous papers, into the plasma simulation code Cloudy. This updated physics is subsequently employed to reconsider the thermally stable phases in absorbing media in AGNs. We show how the absorption profile of the Fe XIV UTA depends on density, due to the changing populations of levels within the ground configuration. © 2013. The American Astronomical Society. All rights reserved.
Resumo:
Many high-state non-magnetic cataclysmic variables (CVs) exhibit blueshifted absorption or P-Cygni profiles associated with ultraviolet (UV) resonance lines. These features imply the existence of powerful accretion disc winds in CVs. Here, we use our Monte Carlo ionization and radiative transfer code to investigate whether disc wind models that produce realistic UV line profiles are also likely to generate observationally significant recombination line and continuum emission in the optical waveband. We also test whether outflows may be responsible for the single-peaked emission line profiles often seen in high-state CVs and for the weakness of the Balmer absorption edge (relative to simple models of optically thick accretion discs). We find that a standard disc wind model that is successful in reproducing the UV spectra of CVs also leaves a noticeable imprint on the optical spectrum, particularly for systems viewed at high inclination. The strongest optical wind-formed recombination lines are H alpha and He ii lambda 4686. We demonstrate that a higher density outflow model produces all the expected H and He lines and produces a recombination continuum that can fill in the Balmer jump at high inclinations. This model displays reasonable verisimilitude with the optical spectrum of RW Trianguli. No single-peaked emission is seen, although we observe a narrowing of the double-peaked emission lines from the base of the wind. Finally, we show that even denser models can produce a single-peaked H alpha line. On the basis of our results, we suggest that winds can modify, and perhaps even dominate, the line and continuum emission from CVs.
Resumo:
We present a study of the nebular phase spectra of a sample of Type II-Plateau supernovae with identified progenitors or restrictive limits. The evolution of line fluxes, shapes and velocities is compared within the sample, and interpreted by the use of a spectral synthesis code. The small diversity within the data set can be explained by strong mixing occurring during the explosion, and by recognizing that most lines have significant contributions from primordial metals in the H envelope, which dominates the total ejecta mass in these types of objects. In particular, when using the [O I] 6300, 6364 Å doublet for estimating the core mass of the star, care has to be taken to account for emission from primordial O in the envelope. Finally, a correlation between the Hα line width and the mass of 56Ni is presented, suggesting that higher energy explosions are associated with higher 56Ni production.
Resumo:
We show that the X-ray line flux of the Mn Kα line at 5.9 keV from the decay of 55Fe is a promising diagnostic to distinguish between Type Ia supernova (SN Ia) explosion models. Using radiation transport calculations, we compute the line flux for two three-dimensional explosion models: a near-Chandrasekhar mass delayed detonation and a violent merger of two (1.1 and 0.9 M⊙) white dwarfs. Both models are based on solar metallicity zero-age main-sequence progenitors. Due to explosive nuclear burning at higher density, the delayed-detonation model synthesizes ˜3.5 times more radioactive 55Fe than the merger model. As a result, we find that the peak Mn Kα line flux of the delayed-detonation model exceeds that of the merger model by a factor of ˜4.5. Since in both models the 5.9-keV X-ray flux peaks five to six years after the explosion, a single measurement of the X-ray line emission at this time can place a constraint on the explosion physics that is complementary to those derived from earlier phase optical spectra or light curves. We perform detector simulations of current and future X-ray telescopes to investigate the possibilities of detecting the X-ray line at 5.9 keV. Of the currently existing telescopes, XMM-Newton/pn is the best instrument for close (≲1-2 Mpc), non-background limited SNe Ia because of its large effective area. Due to its low instrumental background, Chandra/ACIS is currently the best choice for SNe Ia at distances above ˜2 Mpc. For the delayed-detonation scenario, a line detection is feasible with Chandra up to ˜3 Mpc for an exposure time of 106 s. We find that it should be possible with currently existing X-ray instruments (with exposure times ≲5 × 105 s) to detect both of our models at sufficiently high S/N to distinguish between them for hypothetical events within the Local Group. The prospects for detection will be better with future missions. For example, the proposed Athena/X-IFU instrument could detect our delayed-detonation model out to a distance of ˜5 Mpc. This would make it possible to study future events occurring during its operational life at distances comparable to those of the recent supernovae SN 2011fe (˜6.4 Mpc) and SN 2014J (˜3.5 Mpc).
Resumo:
Context. Although the question of progenitor systems and detailed explosion mechanisms still remains a matter of discussion, it is commonly believed that Type Ia supernovae (SNe Ia) are production sites of large amounts of radioactive nuclei. Even though the gamma-ray emission due to radioactive decays is responsible for powering the light curves of SNe Ia, gamma rays themselves are of particular interest as a diagnostic tool because they directly lead to deeper insight into the nucleosynthesis and the kinematics of these explosion events. Aims: We study the evolution of gamma-ray line and continuum emission of SNe Ia with the objective of analyzing the relevance of observations in this energy range. We seek to investigate the chances for the success of future MeV missions regarding their capabilities for constraining the intrinsic properties and the physical processes of SNe Ia. Methods: Focusing on two of the most broadly discussed SN Ia progenitor scenarios - a delayed detonation in a Chandrasekhar-mass white dwarf (WD) and a violent merger of two WDs - we used three-dimensional explosion models and performed radiative transfer simulations to obtain synthetic gamma-ray spectra. Both chosen models produce the same mass of 56Ni and have similar optical properties that are in reasonable agreement with the recently observed supernova SN 2011fe. We examine the gamma-ray spectra with respect to their distinct features and draw connections to certain characteristics of the explosion models. Applying diagnostics, such as line and hardness ratios, the detection prospects for future gamma-ray missions with higher sensitivities in the MeV energy range are discussed. Results: In contrast to the optical regime, the gamma-ray emission of our two chosen models proves to be quite different. The almost direct connection of the emission of gamma rays to fundamental physical processes occurring in SNe Ia permits additional constraints concerning several explosion model properties that are not easily accessible within other wavelength ranges. Proposed future MeV missions such as GRIPS will resolve all spectral details only for nearby SNe Ia, but hardness ratio and light curve measurements still allow for a distinction of the two different models at 10 Mpc and 16 Mpc for an exposure time of 106 s. The possibility of detecting the strongest line features up to the Virgo distance will offer the opportunity to build up a first sample of SN Ia detections in the gamma-ray energy range and underlines the importance of future space observatories for MeV gamma rays.
Resumo:
Effective collision strengths for electron-impact excitation of the N-like ion S x are calculated in the close-coupling approximation using the multichannel R-matrix method. Specific attention is given to the 10 astrophysically important fine-structure forbidden transitions among the 4SO, 2Do and 2Po levels in the 2s22p3 ground configuration. The total (e- + ion) wavefunction is expanded in terms of the 11 lowest LS eigenstates of S x, and each eigenstate is represented by extensive configuration-interaction wavefunctions. The collision strengths obtained are thermally averaged over a Maxwellian distribution of velocities, for all 10 fine-structure transitions, over the range of electron temperatures log T(K) = 4.6-6.7 (the range appropriate for astrophysical applications). The present effective collision strengths are the only results currently available for these fine-structure transition rates.