968 resultados para LIGAND DOCKING
Resumo:
REDCAT: Natural Products and related Redox Catalysts: Basic Research and Applications in Medicine and Agriculture, Aveiro, 25-27 Novembro de 2012.
Resumo:
Protein-ligand docking has made important progress during the last decade and has become a powerful tool for drug development, opening the way to virtual high throughput screening and in silico structure-based ligand design. Despite the flattering picture that has been drawn, recent publications have shown that the docking problem is far from being solved, and that more developments are still needed to achieve high successful prediction rates and accuracy. Introducing an accurate description of the solvation effect upon binding is thought to be essential to achieve this goal. In particular, EADock uses the Generalized Born Molecular Volume 2 (GBMV2) solvent model, which has been shown to reproduce accurately the desolvation energies calculated by solving the Poisson equation. Here, the implementation of the Fast Analytical Continuum Treatment of Solvation (FACTS) as an implicit solvation model in small molecules docking calculations has been assessed using the EADock docking program. Our results strongly support the use of FACTS for docking. The success rates of EADock/FACTS and EADock/GBMV2 are similar, i.e. around 75% for local docking and 65% for blind docking. However, these results come at a much lower computational cost: FACTS is 10 times faster than GBMV2 in calculating the total electrostatic energy, and allows a speed up of EADock by a factor of 4. This study also supports the EADock development strategy relying on the CHARMM package for energy calculations, which enables straightforward implementation and testing of the latest developments in the field of Molecular Modeling.
Resumo:
The DNA G-qadruplexes are one of the targets being actively explored for anti-cancer therapy by inhibiting them through small molecules. This computational study was conducted to predict the binding strengths and orientations of a set of novel dimethyl-amino-ethyl-acridine (DACA) analogues that are designed and synthesized in our laboratory, but did not diffract in Synchrotron light.Thecrystal structure of DNA G-Quadruplex(TGGGGT)4(PDB: 1O0K) was used as target for their binding properties in our studies.We used both the force field (FF) and QM/MM derived atomic charge schemes simultaneously for comparing the predictions of drug binding modes and their energetics. This study evaluates the comparative performance of fixed point charge based Glide XP docking and the quantum polarized ligand docking schemes. These results will provide insights on the effects of including or ignoring the drug-receptor interfacial polarization events in molecular docking simulations, which in turn, will aid the rational selection of computational methods at different levels of theory in future drug design programs. Plenty of molecular modelling tools and methods currently exist for modelling drug-receptor or protein-protein, or DNA-protein interactionssat different levels of complexities.Yet, the capasity of such tools to describevarious physico-chemical propertiesmore accuratelyis the next step ahead in currentresearch.Especially, the usage of most accurate methods in quantum mechanics(QM) is severely restricted by theirtedious nature. Though the usage of massively parallel super computing environments resulted in a tremendous improvement in molecular mechanics (MM) calculations like molecular dynamics,they are still capable of dealing with only a couple of tens to hundreds of atoms for QM methods. One such efficient strategy that utilizes thepowers of both MM and QM are the QM/MM hybrid methods. Lately, attempts have been directed towards the goal of deploying several different QM methods for betterment of force field based simulations, but with practical restrictions in place. One of such methods utilizes the inclusion of charge polarization events at the drug-receptor interface, that is not explicitly present in the MM FF.
Resumo:
The dynamic character of proteins strongly influences biomolecular recognition mechanisms. With the development of the main models of ligand recognition (lock-and-key, induced fit, conformational selection theories), the role of protein plasticity has become increasingly relevant. In particular, major structural changes concerning large deviations of protein backbones, and slight movements such as side chain rotations are now carefully considered in drug discovery and development. It is of great interest to identify multiple protein conformations as preliminary step in a screening campaign. Protein flexibility has been widely investigated, in terms of both local and global motions, in two diverse biological systems. On one side, Replica Exchange Molecular Dynamics has been exploited as enhanced sampling method to collect multiple conformations of Lactate Dehydrogenase A (LDHA), an emerging anticancer target. The aim of this project was the development of an Ensemble-based Virtual Screening protocol, in order to find novel potent inhibitors. On the other side, a preliminary study concerning the local flexibility of Opioid Receptors has been carried out through ALiBERO approach, an iterative method based on Elastic Network-Normal Mode Analysis and Monte Carlo sampling. Comparison of the Virtual Screening performances by using single or multiple conformations confirmed that the inclusion of protein flexibility in screening protocols has a positive effect on the probability to early recognize novel or known active compounds.
Resumo:
The ligand binding domain of the human vitamin D receptor (VDR) was modeled based on the crystal structure of the retinoic acid receptor. The ligand binding pocket of our VDR model is spacious at the helix 11 site and confined at the β-turn site. The ligand 1α,25-dihydroxyvitamin D3 was assumed to be anchored in the ligand binding pocket with its side chain heading to helix 11 (site 2) and the A-ring toward the β-turn (site 1). Three residues forming hydrogen bonds with the functionally important 1α- and 25-hydroxyl groups of 1α,25-dihydroxyvitamin D3 were identified and confirmed by mutational analysis: the 1α-hydroxyl group is forming pincer-type hydrogen bonds with S237 and R274 and the 25-hydroxyl group is interacting with H397. Docking potential for various ligands to the VDR model was examined, and the results are in good agreement with our previous three-dimensional structure-function theory.
Resumo:
In recent years, protein-ligand docking has become a powerful tool for drug development. Although several approaches suitable for high throughput screening are available, there is a need for methods able to identify binding modes with high accuracy. This accuracy is essential to reliably compute the binding free energy of the ligand. Such methods are needed when the binding mode of lead compounds is not determined experimentally but is needed for structure-based lead optimization. We present here a new docking software, called EADock, that aims at this goal. It uses an hybrid evolutionary algorithm with two fitness functions, in combination with a sophisticated management of the diversity. EADock is interfaced with the CHARMM package for energy calculations and coordinate handling. A validation was carried out on 37 crystallized protein-ligand complexes featuring 11 different proteins. The search space was defined as a sphere of 15 A around the center of mass of the ligand position in the crystal structure, and on the contrary to other benchmarks, our algorithm was fed with optimized ligand positions up to 10 A root mean square deviation (RMSD) from the crystal structure, excluding the latter. This validation illustrates the efficiency of our sampling strategy, as correct binding modes, defined by a RMSD to the crystal structure lower than 2 A, were identified and ranked first for 68% of the complexes. The success rate increases to 78% when considering the five best ranked clusters, and 92% when all clusters present in the last generation are taken into account. Most failures could be explained by the presence of crystal contacts in the experimental structure. Finally, the ability of EADock to accurately predict binding modes on a real application was illustrated by the successful docking of the RGD cyclic pentapeptide on the alphaVbeta3 integrin, starting far away from the binding pocket.
Resumo:
This article reports on the design and characteristics of substrate mimetics in protease-catalyzed reactions. Firstly, the basis of protease-catalyzed peptide synthesis and the general advantages of substrate mimetics over common acyl donor components are described. The binding behavior of these artificial substrates and the mechanism of catalysis are further discussed on the basis of hydrolysis, acyl transfer, protein-ligand docking, and molecular dynamics studies on the trypsin model. The general validity of the substrate mimetic concept is illustrated by the expansion of this strategy to trypsin-like, glutamic acid-specific, and hydrophobic amino acid-specific proteases. Finally, opportunities for the combination of the substrate mimetic strategy with the chemical solid-phase peptide synthesis and the use of substrate mimetics for non-peptide organic amide synthesis are presented.
Resumo:
Major outer membrane proteins (MOMPs) of Gram negative bacteria are one of the most intensively studied membrane proteins. MOMPs are essential for maintaining the structural integrity of bacterial outer membranes and in adaptation of parasites to their hosts. There is evidence to suggest a role for purified MOMP from Chlamydophila pneumoniae and corresponding MOMP-derived peptides in immune-modulation, leading to a reduced atherosclerotic phenotype in apoE−/− mice via a characteristic dampening of MHC class II activity. The work reported herein tests this hypothesis by employing a combination of homology modelling and docking to examine the detailed molecular interactions that may be responsible. A three-dimensional homology model of the C. pneumoniae MOMP was constructed based on the 14 transmembrane β-barrel crystal structure of the fatty acid transporter from Escherichia coli, which provides a plausible transport mechanism for MOMP. Ligand docking experiments were used to provide details of the possible molecular interactions driving the binding of MOMP-derived peptides to MHC class II alleles known to be strongly associated with inflammation. The docking experiments were corroborated by predictions from conventional immuno-informatic algorithms. This work supports further the use of MOMP in C. pneumoniae as a possible vaccine target and the role of MOMP-derived peptides as vaccine candidates for immune-therapy in chronic inflammation that can result in cardiovascular events.
Resumo:
Two targets, reverse transcriptase (RT) and protease from HIV-1, were used during the past two decades to the discovery of non-nucleoside reverse transcriptase inhibitors (NNRTI) and protease inhibitors (PI) that belong to the arsenal of the antiretroviral therapy. Herein these enzymes were chosen as templates for conducting a computer-aided ligand design. Ligand and structure-based drug designs were the starting points to select compounds from a database bearing more than five million compounds by means of cheminformatic tools. New promising lead structures are retrieved from the database, which are open to acquisition and test. Classes of molecules already described as NNRTI or PI in the literature also came out and were useful to prove the reliability of the workflow, and thus validating the work carried out so far. (c) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
Structural characterization of enzymes that belong to microbial metabolic pathways is very important for structure-based drug design since some of these proteins may be present in the bacterial genome, but absent in humans. Thus, metabolic pathways became potential targets for drug design. The motivation of this work is the fact that Mycobacterium tuberculosis is the cause of the deaths of millions of people in the world, so that the structural characterization of protein targets to propose new drugs has become essential. DBMODELING is a relational database, created to highlight the importance of methods of molecular modeling applied to the Mycobacterium tuberculosis genome with the aim of proposing protein-ligand docking analysis. There are currently more than 300 models for proteins from Mycobacterium tuberculosis genome in the database. The database contains a detailed description of the reaction catalyzed by each enzyme and their atomic coordinates. Information about structures, a tool for animated gif image, a table with a specification of the metabolic pathway, modeled protein, inputs used in modeling, and analysis methods used in this project are available in the database for download. The search tool can be used for reseachers to find specific pathways or enzymes.
Resumo:
Background: Hepatitis C virus (HCV) currently infects approximately three percent of the world population. In view of the lack of vaccines against HCV, there is an urgent need for an efficient treatment of the disease by an effective antiviral drug. Rational drug design has not been the primary way for discovering major therapeutics. Nevertheless, there are reports of success in the development of inhibitor using a structure-based approach. One of the possible targets for drug development against HCV is the NS3 protease variants. Based on the three-dimensional structure of these variants we expect to identify new NS3 protease inhibitors. In order to speed up the modeling process all NS3 protease variant models were generated in a Beowulf cluster. The potential of the structural bioinformatics for development of new antiviral drugs is discussed.Results: the atomic coordinates of crystallographic structure 1CU1 and 1DY9 were used as starting model for modeling of the NS3 protease variant structures. The NS3 protease variant structures are composed of six subdomains, which occur in sequence along the polypeptide chain. The protease domain exhibits the dual beta-barrel fold that is common among members of the chymotrypsin serine protease family. The helicase domain contains two structurally related beta-alpha-beta subdomains and a third subdomain of seven helices and three short beta strands. The latter domain is usually referred to as the helicase alpha-helical subdomain. The rmsd value of bond lengths and bond angles, the average G-factor and Verify 3D values are presented for NS3 protease variant structures.Conclusions: This project increases the certainty that homology modeling is an useful tool in structural biology and that it can be very valuable in annotating genome sequence information and contributing to structural and functional genomics from virus. The structural models will be used to guide future efforts in the structure-based drug design of a new generation of NS3 protease variants inhibitors. All models in the database are publicly accessible via our interactive website, providing us with large amount of structural models for use in protein-ligand docking analysis.
Resumo:
Genome sequencing efforts are providing us with complete genetic blueprints for hundreds of organisms. We are now faced with assigning, understanding, and modifying the functions of proteins encoded by these genomes. DBMODELING is a relational database of annotated comparative protein structure models and their metabolic pathway characterization, when identified. This procedure was applied to complete genomes such as Mycobacteritum tuberculosis and Xylella fastidiosa. The main interest in the study of metabolic pathways is that some of these pathways are not present in humans, which makes them selective targets for drug design, decreasing the impact of drugs in humans. In the database, there are currently 1116 proteins from two genomes. It can be accessed by any researcher at http://www.biocristalografia.df.ibilce.unesp.br/tools/. This project confirms that homology modeling is a useful tool in structural bioinformatics and that it can be very valuable in annotating genome sequence information, contributing to structural and functional genomics, and analyzing protein-ligand docking.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A series of N6-bicyclic and N6-(2-hydroxy)cyclopentyl derivatives of adenosine were synthesized as novel A1R agonists and their A1R/A2R selectivity assessed using a simple yeast screening platform. We observed that the most selective, high potency ligands were achieved through N6-adamantyl substitution in combination with 5′-N-ethylcarboxamido or 5′-hydroxymethyl groups. In addition, we determined that 5′-(2-fluoro)thiophenyl derivatives all failed to generate a signaling response despite showing an interaction with the A1R. Some selected compounds were also tested on A1R and A3R in mammalian cells revealing that four of them are entirely A1R-selective agonists. By using in silico homology modeling and ligand docking, we provide insight into their mechanisms of recognition and activation of the A1R. We believe that given the broad tissue distribution, but contrasting signaling profiles, of adenosine receptor subtypes, these compounds might have therapeutic potential.