955 resultados para LANTHANIDE-ORGANIC FRAMEWORKS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This manuscript reports the first example of up-conversion properties involving Yb3+ and Tb3+ ions in five isostructural Lanthanide-Organic Frameworks (LnOFs), herein designated as UCMarker-1 to UCMarker-5, respectively, and their application as optical probes for the identification of gunshot residues (GSRs) and the ammunition encryption procedure. The excitation of the Yb3+2 F-7/2 <-> F-2(5/2) transition (980 nm) at room temperature leads to visible up-conversion (UC) emission of Tb3+ D-5(4) -> F-7(J). The GSR and lead-free primer residues are easily identified upon UV radiation (lambda = 254 nm). These results prove that the exploration of LnOFs to identify GSR is attractive for the identification of ammunition origins or caliber recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we report a theoretical and experimental investigation of the energy transfer mechanism in two isotypical 2D coordination polymers, (infinity)[(Tb1-xEux)(DPA)(HDPA)], where H(2)DPA is pyridine 2,6-dicarboxylic acid and x = 0.05 or 0.50. Emission spectra of (infinity)[(Tb0.95Eu0.05)(DPA)(HDPA)] and (infinity)[(Tb0.5Eu0.5)(DPA)(HDPA)], (I) and (2), show that the high quenching effect on Tb3+ emission caused by Eu3+ ion indicates an efficient Tb3+-> Eu3+ energy transfer (ET). The k(ET) of Tb3+-> Eu3+ ET and rise rates (k(r)) of Eu3+ as a function of temperature for (1) are on the same order of magnitude, indicating that the sensitization of the Eu3+5D0 level is highly fed by ET from the D-5(4) level of Tb3+ ion. The eta(ET) and R-0 values vary in the 67-79% and 7.15 to 7.93 angstrom ranges. Hence, Tb3+ is enabled to transfer efficiently to Eu3+ that can occupy the possible sites at 6.32 and 6.75 angstrom. For (2), the ET processes occur on average with eta(ET) and R-0 of 97% and 31 angstrom, respectively. Consequently, Tb3+ ion is enabled to transfer energy to Eu3+ localized at different layers. The theoretical model developed by Malta was implemented aiming to insert more insights about the dominant mechanisms involved in the ET between lanthanides ions. Calculated single Tb3+-> Eu3+ ETs are three orders of magnitude inferior to those experimentally; however, it can be explained by the theoretical model that does not consider the role of phonon assistance in the Ln(3+)-> Ln(3+) ET processes. In addition, the Tb3+-> Eu3+ ET processes are predominantly governed by dipole-dipole (d-d) and dipole-quadrupole (d-q) mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two new metal- organic compounds {[Cu-3(mu(3)-4-(p)tz)(4)(mu(2)-N-3)(2)(DMF)(2)](DMF)(2)}(n) (1) and {[Cu(4ptz) (2)(H2O)(2)]}(n) (2) {4-ptz = 5-(4-pyridyl)tetrazolate} with 3D and 2D coordination networks, respectively, have been synthesized while studying the effect of reaction conditions on the coordination modes of 4-pytz by employing the [2 + 3] cycloaddition as a tool for generating in situ the 5-substituted tetrazole ligands from 4-pyridinecarbonitrile and NaN3 in the presence of a copper(II) salt. The obtained compounds have been structurally characterized and the topological analysis of 1 discloses a topologically unique trinodal 3,5,6-connected 3D network which, upon further simplification, results in a uninodal 8-connected underlying net with the bcu (body centred cubic) topology driven by the [Cu-3(mu(2)-N-3)(2)] cluster nodes and mu(3)-4-ptz linkers. In contrast, the 2D metal-organic network in 2 has been classified as a uninodal 4-connected underlying net with the sql [Shubnikov tetragonal plane net] topology assembled from the Cu nodes and mu(2)-4-ptz linkers. The catalytic investigations disclosed that 1 and 2 act as active catalyst precursors towards the microwave-assisted homogeneous oxidation of secondary alcohols (1-phenylethanol, cyclohexanol, 2-hexanol, 3-hexanol, 2-octanol and 3-octanol) with tert-butylhydroperoxide, leading to the yields of the corresponding ketones up to 86% (TOF = 430 h(-1)) and 58% (TOF = 290 h(-1)) in the oxidation of 1-phenylethanol and cyclohexanol, respectively, after 1 h under low power ( 10 W) microwave irradiation, and in the absence of any added solvent or additive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microwave assisted synthesis of the Cu(I) compound [Cu(µ4-4-ptz)]n [1, 4-ptz = 5-(4-pyridyl)tetrazolate] has been performed by employing a relatively easy method and within a shorter period of time compared to its sister compounds. The syntheses of the Cu(II) compounds [Cu3(µ3-4-ptz)4(µ2-N3)2(DMF)2]n∙(DMF)2n (2) and [Cu(µ2-4-ptz)2(H2O)2]n (3) using a similar method were reported previously by us. MOFs 1-3 revealed high catalytic activity toward oxidation of cyclic alkanes (cyclopentane, -hexane and -octane) with aqueous hydrogen peroxide, under very mild conditions (at room temperature), without any added solvent or additive. The most efficient system (2/H2O2) showed, for the oxidation of cyclohexane, a turnover number (TON) of 396 (TOF of 40 h−1), with an overall product yield (cyclohexanol and cyclohexanone) of 40% relative to the substrate. Moreover, the heterogeneous catalytic systems 1–3 allowed an easy catalyst recovery and reuse, at least for four consecutive cycles, maintaining ca. 90% of the initial high activity and concomitant high selectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disserta ção apresentada para obten ção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new polynuclear copper(II) complexes of 2-picolinic acid (Hpic), {[Cu-2(pic)(3)(H2O)]ClO4}(n) (1), {[Cu-2(pic)(3)(H2O)]BF4}(n) (2), and [Cu-2(pic)3(H2O)(2)(NO3)](n) (3), have been synthesized by reaction of the "metalloligand" [Cu-(pic)(2)] with the corresponding copper(II) salts. The compounds are characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements. Compounds 1 and 2 are isomorphous and crystallize in the triclinic system with space group P (1) over bar, while 3 crystallizes in the monoclinic system with space group P2(1)/n. The structural analyses reveal that complexes 1 and 2 are constructed by "fish backbone" chains through syn-anti (equatorial-equatorial) carboxylate bridges, which are linked to one another by syn-anti (equatorial-axial) carboxylate bridges, giving rise to a rectangular grid-like two-dimensional net. Complex 3 is formed by alternating chains of syn-anti carboxylate-bridged copper(II) atoms, which are linked together by strong H bonds involving coordinated nitrate ions and water molecules and uncoordinated oxygen atoms from carboxylate groups. The different coordination ability of the anions along with their involvement in the H-bonding network seems to be responsible for the difference in the final polymeric structures. Variable-temperature (2-300 K) magnetic susceptibility measurement shows the presence of weak ferromagnetic coupling for all three complexes that have been fitted with a fish backbone model developed for 1 and 2 (J = 1.74 and 0.99 cm(-1); J' = 0.19 and 0.25 cm(-1), respectively) and an alternating chain model for 3 (J = 1.19 cm(-1) and J' = 1.19 cm(-1)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal-organic frameworks (MOFs) can be exceptionally good catalytic materials thanks to the presence of active metal centres and a porous structure that is advantageous for molecular adsorption and confinement. We present here a first-principles investigation of the electronic structure of a family of MOFs based on porphyrins connected through phenyl-carboxyl ligands and AlOH species, in order to assess their suitability for the photocatalysis of fuel production reactions using sunlight. We consider structures with protonated porphyrins and those with the protons exchanged with late 3d metal cations (Fe2+, Co2+, Ni2+, Cu2+, Zn2+), a process that we find to be thermodynamically favorable from aqueous solution for all these metals. Our band structure calculations, based on an accurate screened hybrid functional, reveal that the bandgaps are in a favorable range (2.0 to 2.6 eV) for efficient adsorption of solar light. Furthermore, by approximating the vacuum level to the pore center potential, we provide the alignment of the MOFs’ band edges with the redox potentials for water splitting and carbon dioxide reduction, and show that the structures studied here have band edges positions suitable for these reactions at neutral pH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal-organic frameworks (MOFs) obtained much attention because of their unusual structures and properties as well as their potential applications. This dissertation research was focused on (1) the effects of synthesis conditions on the structures of MOFs, (2) the thermal stability of MOFs, (3) pressure-induced amorphization, and (4) the effect of high-valent ions on the structure of a MOF. This research demonstrated that the crystal structure of MOF-5 could be controlled by drying solvents. If the vacuum solvent is dimethylformamide (DMF), the crystal structure of MOF-5 is tetragonal. In contrast, if the DMF is displaced by CH2Cl2 before the vacuum, the obtained MOF-5 occupies a cubic structure. Furthermore, it was found that the tetragonal MOF-5 exhibited a mediate surface area (300-1000 m2/g). The surface area of tetragonal MOF-5 is also dependent on Zn(NO3)2/H2BDC (H2BDC: terephthalic acid) molar ratios used for its synthesis. The optimum ratio is 1.38, at which synthesized tetragonal MOF-5 exhibits the highest crystallinity and surface area (1297 m2/g). The thermal stability and decomposition of MOF-5 were systematically investigated. The thermal decomposition of cubic and tetragonal MOF-5s resulted in the same products: CO2, benzene, amorphous carbon, and crystal ZnO. The thermal decomposition is due to breaking carboxylic bridges between benzene rings and Zn4O clusters. Identifying structural relationships between crystalline and noncrystalline states is of fundamental interest in materials research. Currently, amorphization of solid materials at ambient temperature requires an ultra-high pressure (several GPa). However, this research demonstrated that MOF-5 and IRMOF-8 can be irreversibly amorphized at ambient temperature by employing a low compressing pressure of 3.5 MPa, which is 100 times lower than that required for amorphization of other solids. Furthermore, the pressure-induced amorphization (PIA) of MOFs is strongly dependent on the changeability of bond angles. If the geometric structure of a MOF can allow bond angles to be changed without breaking bonds, it can easily be amorphized by compression. This can explain why MOF-5 and IRMOF-8 can easily be amorphized via compression than Cu-BTC. It is generally recognized that zeolitic imidazolate frameworks (ZIFs) occupy much higher stability than other types of MOFs. The representative of ZIFs is Zn(2-methylimidazole)2 (ZIF-8) exhibiting high-decomposition temperature and high chemical resistance to various solvents. However, so far, it is still unknown whether the high stability of ZIF-8 can be challenged by ions, which is important for its modification by doping ions. In this research, we performed aqueous salt solution treatment on ZIF-8, and the results showed that anions (Cl¯ and NO3¯) in a solution exhibited no effect on the crystal structure of ZIF-8. However, the effect of cations (in a solution) on structure of ZIF-8 strongly depends on the cation valences. The univalent metal cations showed no effect on the structure of ZIF-8, whereas the bivalent or higher-valent metal cations caused the collapse of ZIF-8 crystal structure. Therefore, structure stability of ZIF-8 is considered when it is subjected to the application, in which high-valent metal cations are involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general introduction to the state of the art in modeling metal organic materials using transferable atomic multipoles is provided. The method is based on the building block partitioning of the electron density, which is illustrated with some examples of potential applications and with detailed discussions of the advantages and pitfalls. The interactions taking place between building blocks are summarized and are used to discuss the properties that can be calculated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the interaction of ethylene and ethane with a Cu-tricarboxylate complex and show that at low loadings the lighter molecule has a higher binding energy as a result of an increased interaction with the framework Cu and stronger hydrogen bonding with the basic framework oxygens. This leads to selective adsorption of ethylene by a factor of about 2 at low pressure, which is overcome by the stronger van der Waals interaction of ethane at high loadings, explaining recent literature data. The results suggest the possibility of separation of light hydrocarbons at low pressures or in trace amounts.