816 resultados para Knowledge Representation Formalisms and Methods
Resumo:
Methods of analogous reasoning and case-based reasoning for intelligent decision support systems are considered. Special attention is drawn to methods based on a structural analogy that take the context into account. This work was supported by RFBR (projects 02-07-90042, 05-07-90232).
Resumo:
Определены подходы к интеллектуальному поиску информации при помощи современных Web-технологий. Проанализированы источники онтологических описаний предметных областей поиска, в частности, семантическая Википедия. Предложены методы использования онтологий для повышения пертинентности информационного поиска.
Resumo:
В постановочном плане рассмотрены вопросы введения понятия «пространство развития», виды возможных изменений системы, структура и механизмы развития. Рассмотрены типологии индикаторов развития, роль информационной компоненты и понятия качества.
Resumo:
In this position paper we propose a consistent and unifying view to all those basic knowledge representation models that are based on the existence of two somehow opposite fuzzy concepts. A number of these basic models can be found in fuzzy logic and multi-valued logic literature. Here it is claimed that it is the semantic relationship between two paired concepts what determines the emergence of different types of neutrality, namely indeterminacy, ambivalence and conflict, widely used under different frameworks (possibly under different names). It will be shown the potential relevance of paired structures, generated from two paired concepts together with their associated neutrality, all of them to be modeled as fuzzy sets. In this way, paired structures can be viewed as a standard basic model from which different models arise. This unifying view should therefore allow a deeper analysis of the relationships between several existing knowledge representation formalisms, providing a basis from which more expressive models can be later developed.
Resumo:
The goal of the present research is to define a Semantic Web framework for precedent modelling, by using knowledge extracted from text, metadata, and rules, while maintaining a strong text-to-knowledge morphism between legal text and legal concepts, in order to fill the gap between legal document and its semantics. The framework is composed of four different models that make use of standard languages from the Semantic Web stack of technologies: a document metadata structure, modelling the main parts of a judgement, and creating a bridge between a text and its semantic annotations of legal concepts; a legal core ontology, modelling abstract legal concepts and institutions contained in a rule of law; a legal domain ontology, modelling the main legal concepts in a specific domain concerned by case-law; an argumentation system, modelling the structure of argumentation. The input to the framework includes metadata associated with judicial concepts, and an ontology library representing the structure of case-law. The research relies on the previous efforts of the community in the field of legal knowledge representation and rule interchange for applications in the legal domain, in order to apply the theory to a set of real legal documents, stressing the OWL axioms definitions as much as possible in order to enable them to provide a semantically powerful representation of the legal document and a solid ground for an argumentation system using a defeasible subset of predicate logics. It appears that some new features of OWL2 unlock useful reasoning features for legal knowledge, especially if combined with defeasible rules and argumentation schemes. The main task is thus to formalize legal concepts and argumentation patterns contained in a judgement, with the following requirement: to check, validate and reuse the discourse of a judge - and the argumentation he produces - as expressed by the judicial text.
Resumo:
Tese de doutoramento, Informática (Bioinformática), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
Nurses prepare knowledge representations, or summaries of patient clinical data, each shift. These knowledge representations serve multiple purposes, including support of working memory, workload organization and prioritization, critical thinking, and reflection. This summary is integral to internal knowledge representations, working memory, and decision-making. Study of this nurse knowledge representation resulted in development of a taxonomy of knowledge representations necessary to nursing practice.This paper describes the methods used to elicit the knowledge representations and structures necessary for the work of clinical nurses, described the development of a taxonomy of this knowledge representation, and discusses translation of this methodology to the cognitive artifacts of other disciplines. Understanding the development and purpose of practitioner's knowledge representations provides important direction to informaticists seeking to create information technology alternatives. The outcome of this paper is to suggest a process template for transition of cognitive artifacts to an information system.
Resumo:
This paper describes the knowledge elicitation and knowledge representation aspects of a system being developed to help with the design and maintenance of relational data bases. The size algorithmic components. In addition, the domain contains multiple experts, but any given expert's knowledge of this large domain is only partial. The paper discusses the methods and techniques used for knowledge elicitation, which was based on a "broad and shallow" approach at first, moving to a "narrow and deep" one later, and describes the models used for knowledge representation, which were based on a layered "generic and variants" approach. © 1995.
Resumo:
The topic of designers’ knowledge and how they conduct design process has been widely investigated in design research. Understanding theoretical and experiential knowledge in design has involved recognition of the importance of designers’ experience of experiencing, seeing, and absorbing ideas from the world as points of reference (or precedents) that are consulted whenever a design problem arises (Lawson, 2004). Hence, various types of design knowledge have been categorized (Lawson, 2004), and the nature of design knowledge continues to be studied (Cross, 2006); nevertheless, the study of the experiential aspects embedded in design knowledge is a topic not fully addressed. In particular there has been little emphasis on the investigation of the ways in which designers’ individual experience influences different types of design tasks. This research focuses on the investigation of the ways in which designers inform a usability design process. It aims to understand how designers design product usability, what informs their process, and the role their individual experience (and episodic knowledge) plays within the design process. This paper introduces initial outcomes from an empirical study involving observation of a design task that emphasized usability issues. It discusses the experiential knowledge observed in the visual representations (sketches) produced by designers as part of the design tasks. Through the use of visuals as means to represent experiential knowledge, this paper presents initial research outcomes to demonstrate how designers’ individual experience is integrated into design tasks and communicated within the design process. Initial outcomes demonstrate the influence of designers’ experience in the design of product usability. It is expected that outcomes will help identify the causal relationships between experience, context of use, and product usability, which will contribute to enhance our understanding about the design of user-product interactions.
Resumo:
Abstract With the phenomenal growth of electronic data and information, there are many demands for the development of efficient and effective systems (tools) to perform the issue of data mining tasks on multidimensional databases. Association rules describe associations between items in the same transactions (intra) or in different transactions (inter). Association mining attempts to find interesting or useful association rules in databases: this is the crucial issue for the application of data mining in the real world. Association mining can be used in many application areas, such as the discovery of associations between customers’ locations and shopping behaviours in market basket analysis. Association mining includes two phases. The first phase, called pattern mining, is the discovery of frequent patterns. The second phase, called rule generation, is the discovery of interesting and useful association rules in the discovered patterns. The first phase, however, often takes a long time to find all frequent patterns; these also include much noise. The second phase is also a time consuming activity that can generate many redundant rules. To improve the quality of association mining in databases, this thesis provides an alternative technique, granule-based association mining, for knowledge discovery in databases, where a granule refers to a predicate that describes common features of a group of transactions. The new technique first transfers transaction databases into basic decision tables, then uses multi-tier structures to integrate pattern mining and rule generation in one phase for both intra and inter transaction association rule mining. To evaluate the proposed new technique, this research defines the concept of meaningless rules by considering the co-relations between data-dimensions for intratransaction-association rule mining. It also uses precision to evaluate the effectiveness of intertransaction association rules. The experimental results show that the proposed technique is promising.
Resumo:
Tutkielma käsittelee nykyisiä kognitiotieteen teorioita käsitteistä ja niiden mallintamista oliokeskeisillä tietämyksen esittämisen menetelmillä. Käsiteteorioista käsitellään klassinen, määritelmäteoria, prototyyppiteoria, duaaliteoriat, uusklassinen teoria, teoria-teoria ja atomistinen teoria. Oliokeskeiset menetelmät ovat viime aikoina jakautuneet kahden tyyppisiin kieliin: oliopohjaisiin ja luokkapohjaisiin. Uudet olio-pohjaiset olio-ohjelmointikielet antavat käsitteiden representointiin mahdollisuuksia, jotka puuttuvat aikaisemmista luokka-pohjaisista kielistä ja myös kehysmenetelmistä. Tutkielma osoittaa, että oliopohjaisten kielten uudet piirteet tarjoavat keinoja, joilla käsitteitä voidaan esittää symbolisessa muodossa paremmin kuin perinteisillä menetelmillä. Niillä pystytään simuloimaan kaikkea mitä luokkapohjaisilla kielillä voidaan, mutta ne pystyvät lisäksi simuloimaan perheyhtäläisyyskäsitteitä ja mahdollistavat olioiden dynaamisen muuttamisen ilman, että siinä rikotaan psykologisen essentialismin periaatetta. Tutkielma osoittaa lisäksi vakavia puutteitta, jotka koskevat koko oliokeskeistä menetelmää. Avainsanat: käsitteet, käsiteteoriat, tekoäly, komputationaalinen psykologia, olio-ohjelmointi, tiedon esittäminen
Resumo:
TYPICAL is a package for describing and making automatic inferences about a broad class of SCHEME predicate functions. These functions, called types following popular usage, delineate classes of primitive SCHEME objects, composite data structures, and abstract descriptions. TYPICAL types are generated by an extensible combinator language from either existing types or primitive terminals. These generated types are located in a lattice of predicate subsumption which captures necessary entailment between types; if satisfaction of one type necessarily entail satisfaction of another, the first type is below the second in the lattice. The inferences make by TYPICAL computes the position of the new definition within the lattice and establishes it there. This information is then accessible to both later inferences and other programs (reasoning systems, code analyzers, etc) which may need the information for their own purposes. TYPICAL was developed as a representation language for the discovery program Cyrano; particular examples are given of TYPICAL's application in the Cyrano program.
Resumo:
This report describes a system which maintains canonical expressions for designators under a set of equalities. Substitution is used to maintain all knowledge in terms of these canonical expressions. A partial order on designators, termed the better-name relation, is used in the choice of canonical expressions. It is shown that with an appropriate better-name relation an important engineering reasoning technique, propagation of constraints, can be implemented as a special case of this substitution process. Special purpose algebraic simplification procedures are embedded such that they interact effectively with the equality system. An electrical circuit analysis system is developed which relies upon constraint propagation and algebraic simplification as primary reasoning techniques. The reasoning is guided by a better-name relation in which referentially transparent terms are preferred to referentially opaque ones. Multiple description of subcircuits are shown to interact strongly with the reasoning mechanism.
Resumo:
N.J. Lacey and M.H. Lee, ?The Implications of Philosophical Foundations for Knowledge Representation and Learning in Agents?, Springer-Verlag Lecture Notes on Artificial Intelligence, Vol 2636 on Adaptive Agents and Multi-Agent Systems, 2002.