674 resultados para Killer Whales
Resumo:
In 1992 and 1993, researchers from the National Marine Mammal Laboratory initiated photo-identification studies on Alaskan killer whales, Orcinus orca. Waters from Kodiak Island west to the central and eastern Aleutian Islands and southeastern Bering Sea were surveyed. A total of 289 individual whales were identified. A photographic record of the whales encountered during these surveys is presented. When photographs of the 289 individual whales were compared among various regions in Alaska (Prince William Sound and Southeast Alaska) and areas outside Alaska (British Columbia, Washington, and California), 11 matches were found. The count is conservative because the 1992 and 1993 surveys were limited in geographical range, restricted to summer periods, and whales may have been missed along the survey trackline. Future research incorporating both photoidentification studies and line transect surveys will provide reliable abundance estimates of Alaskan killer whales. (PDF file contains 58 pages.)
Resumo:
Two sympatric populations of “transient” (mammal-eating) killer whales were photo-identified over 27 years (1984–2010) in Prince William Sound and Kenai Fjords, coastal waters of the northern Gulf of Alaska (GOA). A total of 88 individuals were identified during 203 encounters with “AT1” transients (22 individuals) and 91 encounters with “GOA” transients (66 individuals). The median number of individuals identified annually was similar for both populations (AT1=7; GOA=8), but mark-recapture estimates showed the AT1 whales to have much higher fidelity to the study area, whereas the GOA whales had a higher exchange of individuals. Apparent survival estimates were generally high for both populations, but there was a significant reduction in the survival of AT1 transients after the Exxon Valdez oil spill in 1989, with an abrupt decline in estimated abundance from a high of 22 in 1989 to a low of seven whales at the end of 2010. There was no detectable decline in GOA population abundance or survival over the same period, but abundance ranged from just 6 to 18 whales annually. Resighting data from adjacent coastal waters and movement tracks from satellite tags further indicated that the GOA whales are part of a larger population with a more extensive range, whereas AT1 whales are resident to the study area.
Resumo:
From 2001 to 2004 in the eastern Aleutian Islands, Alaska, killer whales (Orcinus orca) were encountered 250 times during 421 days of surveys that covered a total of 22,491 miles. Three killer whale groups (resident, transient, and offshore) were identified acoustically and genetically. Resident killer whales were found 12 times more frequently than transient killer whales, and offshore killer whales were encountered only once. A minimum of 901 photographically identified resident whales used the region during our study. A total of 165 mammal-eating transient killer whales were identified, and the majority (70%) were encountered during spring (May and June). The diet of transient killer whales in spring was primarily gray whales (Eschrichtius robustus), and in summer primarily northern fur seals (Callorhinus ursinus). Steller sea lions (Eumetopias jubatus) did not appear to be a preferred prey or major prey item during spring and summer. The majority of killer whales in the eastern Aleutian Islands are the resident ecotype, which does not consume marine mammals.
Resumo:
Since the inception of the tuna long line fishery in the Indian Ocean in 1952, an annual average of 10% of the number of tunas and spear fishes caught continues to be damaged by sharks. In spite of the fact that this method of fishing for tunas is also resulting in the exploitation of a significant quantity of the tuna-preying sharks, the extent of the damage by these predators continues to be fairly constant. Quite often the damaged tunas are acceptable to the market, especially for canning. On the other hand report of damage caused by killer-whales, occasional at the beginning of the fishery in the Indian Ocean, has been increasing in frequency each year and since 1960 tuna fishermen have been desperately calling for ways and means of reducing the damage caused by these mammals. Unlike sharks killer-whales do not get hooked on the tuna long line; and tunas damaged by killer-whales are almost always unfit even for canning. The problem of predation by killer-whales exists not only in the whole of the Indian Ocean including the Timor and Banda Seas but also in the Atlantic and Pacific Oceans, especially in the seas around New Guinea, Samoa, Caroline and Marshal Islands. The seriousness of this problem of predation was highlighted at the annual tuna research conference held in Kochi, Japan, in February 1963, and steps were taken to devote considerable attention to this problem.
Resumo:
Killer whale (Orcinus orca Linnaeus, 1758) abundance in the North Pacific is known only for a few populations for which extensive longitudinal data are available, with little quantitative data from more remote regions. Line-transect ship surveys were conducted in July and August of 2001–2003 in coastal waters of the western Gulf of Alaska and the Aleutian Islands. Conventional and Multiple Covariate Distance Sampling methods were used to estimate the abundance of different killer whale ecotypes, which were distinguished based upon morphological and genetic data. Abundance was calculated separately for two data sets that differed in the method by which killer whale group size data were obtained. Initial group size (IGS) data corresponded to estimates of group size at the time of first sighting, and post-encounter group size (PEGS) corresponded to estimates made after closely approaching sighted groups.
Resumo:
Beginning in the late 1980s, large groups of previously unidentified killer whales (Orcinus orca) were sighted off the west coast of Vancouver Island and in the Queen Charlotte Islands, British Columbia. Scientists working in this region produced two killer whale photo-identification catalogues that included both transient (mammal-eating) whales and 65 individual whales that investigators believed represented a distinct killer whale community (Ford et al. 1992, Heise et al. 1993). It was thought that these killer whales maintained a generally offshore distribution and were provisionally termed “offshores”; a term that has since been used as a population identifier for the eastern temperate North Pacific offshore killer whale population. Then in September 1992, 75 unidentified whales entered the Strait of Juan de Fuca just south and east of Victoria, British Columbia (Walters et al. 1992). Although most of these whales had not been seen before, two were matched to killer whales in the Queen Charlotte photo-identification catalogue (Ford et al. 1992, Heise et al. 1993) and were thus listed as “offshore” killer whales. During a similar time period, other large groups of killer whales, previously unidentified, were also being sighted off Alaska and California (Dahlheim et al. 1997; Nancy Black and Alisa Schulman- Janiger, unpublished data, respectively).
Resumo:
Springer et al. (2003) contend that sequential declines occurred in North Pacific populations of harbor and fur seals, Steller sea lions, and sea otters. They hypothesize that these were due to increased predation by killer whales, when industrial whaling’s removal of large whales as a supposed primary food source precipitated a prey switch. Using a regional approach, we reexamined whale catch data, killer whale predation observations, and the current biomass and trends of potential prey, and found little support for the prey-switching hypothesis. Large whale biomass in the Bering Sea did not decline as much as suggested by Springer et al., and much of the reduction occurred 50–100 yr ago, well before the declines of pinnipeds and sea otters began; thus, the need to switch prey starting in the 1970s is doubtful. With the sole exception that the sea otter decline followed the decline of pinnipeds, the reported declines were not in fact sequential. Given this, it is unlikely that a sequential megafaunal collapse from whales to sea otters occurred. The spatial and temporal patterns of pinniped and sea otter population trends are more complex than Springer et al. suggest, and are often inconsistent with their hypothesis. Populations remained stable or increased in many areas, despite extensive historical whaling and high killer whale abundance. Furthermore, observed killer whale predation has largely involved pinnipeds and small cetaceans; there is little evidence that large whales were ever a major prey item in high latitudes. Small cetaceans (ignored by Springer et al.) were likely abundant throughout the period. Overall, we suggest that the Springer et al. hypothesis represents a misleading and simplistic view of events and trophic relationships within this complex marine ecosystem.
Resumo:
Top predators in the marine environment integrate chemical signals acquired from their prey that reflect both the species consumed and the regions from which the prey were taken. These chemical tracers—stable isotope ratios of carbon and nitrogen; persistent organic pollutant (POP) concentrations, patterns and ratios; and fatty acid profiles—were measured in blubber biopsy samples from North Pacific killer whales (Orcinus orca) (n = 84) and were used to provide further insight into their diet, particularly for the offshore group, about which little dietary information is available. The offshore killer whales were shown to consume prey species that were distinctly different from those of sympatric resident and transient killer whales. In addition, it was confirmed that the offshores forage as far south as California. Thus, these results provide evidence that the offshores belong to a third killer whale ecotype. Resident killer whale populations showed a gradient in stable isotope profiles from west (central Aleutians) to east (Gulf of Alaska) that, in part, can be attributed to a shift from off-shelf to continental shelf-based prey. Finally, stable isotope ratio results, supported by field observations, showed that the diet in spring and summer of eastern Aleutian Island transient killer whales is apparently not composed exclusively of Steller sea lions.
Resumo:
Top predators in the marine environment integrate chemical signals acquired from their prey that reflect both the species consumed and the regions from which the prey were taken. These chemical tracers—stable isotope ratios of carbon and nitrogen; persistent organic pollutant (POP) concentrations, patterns and ratios; and fatty acid profiles—were measured in blubber biopsy samples from North Pacific killer whales (Orcinus orca) (n = 84) and were used to provide further insight into their diet, particularly for the offshore group, about which little dietary information is available. The offshore killer whales were shown to consume prey species that were distinctly different from those of sympatric resident and transient killer whales. In addition, it was confirmed that the offshores forage as far south as California. Thus, these results provide evidence that the offshores belong to a third killer whale ecotype. Resident killer whale populations showed a gradient in stable isotope profiles from west (central Aleutians) to east (Gulf of Alaska) that, in part, can be attributed to a shift from off-shelf to continental shelf-based prey. Finally, stable isotope ratio results, supported by field observations, showed that the diet in spring and summer of eastern Aleutian Island transient killer whales is apparently not composed exclusively of Steller sea lions.
Resumo:
We examined the summer distribution of marine mammals off the northern Washington coast based on six ship transect surveys conducted between 1995 and 2002, primarily from the NOAA ship McArthur. Additionally, small boat surveys were conducted in the same region between 1989 and 2002 to gather photographic identification data on humpback whales (Megaptera novaeangliae) and killer whales (Orcinus orca) to examine movements and population structure. In the six years of ship survey effort, 706 sightings of 15 marine mammal species were made. Humpback whales were the most common large cetacean species and were seen every year and a total of 232 sightings of 402 animals were recorded during ship surveys. Highest numbers were observed in 2002, when there were 79 sightings of 139 whales. Line-transect estimates for humpback whales indicated that about 100 humpback whales inhabited these waters each year between 1995 and 2000; in 2002, however, the estimate was 562 (CV= 0.21) whales. A total of 191 unique individuals were identified photographically and mark recapture estimates also indicated that the number of animals increased from under 100 to over 200 from 1995 to 2002. There was only limited interchange of humpback whales between this area and feeding areas off Oregon and California. Killer whales were also seen on every ship survey and represented all known ecotypes of the Pacific Northwest, including southern and northern residents, transients, and offshore-type killer whales. Dall’s porpoise (Phocoenoides dalli) were the most frequently sighted small cetacean; abundance was estimated at 181−291 individuals, except for 2002 when we observed dramatically higher numbers (876, CV= 0.30). Northern fur seals (Callorhinus ursinus) and elephant seals (Mirounga angustirostris) were the most common pinnipeds observed. There were clear habitat differences related to distance offshore and water depth for different species.
Resumo:
Studying the sociobiology and behavioral ecology of cetaceans is particularly challenging due in large part to the aquatic environment in which they live. Nevertheless, many of the obstacles traditionally associated with data gathering on tree-ranging whales, dolphins and porpoises are rapidly being overcome, and are now far less formidable. During the past several decades, marine mammal scientists equipped with innovative research methods and new technologies have taken field-based behavioral studies to a new level of sophistication. In some cases, as is true for bottlenose dolphins, killer whales, sperm whales and humpback whales, modern research paradigms in the marine environment are comparable to present-day studies of terrestrial mammal social systems. Cetacean Society stands testament to the relatively recent advances in marine mammal science, and to those scientists, past and present, whose diligence has been instrumental in shaping the discipline.
Resumo:
Killer whale predation on belugas in Cook Inlet, Alaska, has become a concern since the decline of these belugas was documented during the 1990s. Accordingly, killer whale sightings were compiled from systematic surveys, observer databases, and anecdotal accounts. Killer whales have been relatively common in lower Cook Inlet (at least 100 sightings from 1975 to 2002), but in the upper Inlet, north of Kalgin Island, sightings were infrequent (18 in 27 yr), especially prior to the 1990s. Beach cast beluga carcasses with teeth marks and missing flesh also provided evidence of killer whale predation. Most observed killer whale/beluga interactions were in the upper Inlet. During 11 of 15 observed interactions, belugas were obviously injured or killed, either through direct attacks or indirectly as a result of stranding. Assuming at least one beluga mortality occurred during the other four encounters, we can account for 21 belugas killed between 1985 and 2002. This would suggest a minimum estimate of roughly l/yr and does not include at least three instances where beluga calves accompanied an adult that was attacked.
Resumo:
To investigate the incidence of non-lethal predation in Southern Hemisphere whales, more than 3400 fluke-identification photographs from resight histories of 1436 east Australian humpback whales were examined for evidence of predatory markings. Photographs were obtained from 1984 to 1996 at various locations along the east coast of Australia, from northern Queensland to southern New South Wales. Photographs were classified in terms of the level and type of scarring. The possible predator and whether the markings appeared fresh were also noted. In all, 17% of identified east Australian humpbacks possessed some form of predatory scarring, 57% of which was minor and 43% major. Almost all predatory scarring was consistent with that inflicted by killer whales. Only three whales demonstrated an increase in the level of predatory scarring after their first sightings. Two incidents of fresh scarring were recorded, and one fatal killer whale attack on a humpback whale calf was directly observed. The overall level of predatory scarring found in this study is comparable to those found in studies for Northern Hemisphere humpback whales. The low incidence of adult whales showing their first sign of predatory scarring after their initial sighting, and the small number possessing recent scarring, support the idea that east Australian humpback whales experience most predatory attacks early in life.
Resumo:
This dissertation is an assessment of the status of odontocetes in Hawaiian waters focussing on O´ahu. The work builds on available literature, and on data collected by the author and by others in Hawaiian waters. Abundance and distribution patterns of odontocetes were derived from stranding and aerial survey data. A stranding network operated by the National Marine Fisheries Service, Pacific Area Office collected 187 stranding reports throughout the main Hawaiian Islands between 1937 and 2002. These reports included 16 odontocete species. Number of stranding reports increased over time and was highest on O´ahu. Strandings occurred throughout the year. The difference in number of strandings per month was not significant. Fifteen of the 16 species reported in the stranding record for the main Hawaiian Islands were also reported by aerial survey studies of the area between 1993 and 1998. Only 7 of the species reported were detected during aerial transects around O′ahu between 1998 and 2000. Based on the stranding record, Kogia sp., melon-headed whales, striped dolphins and dwarf killer whale appear to be more common than suggested by aerial surveys. Conversely, pilot whales and bottlenose dolphins were more common, according to aerial surveys, than predicted by the stranding data. Aerial surveys of waters between 0 and 500m around the Island of O′ahu showed that the most abundant species by frequency of occurrence was the pilot whale (30% of sightings), followed by the spinner (16%) and bottlenose dolphin (14%). Because of small sample size, abundance estimates for odontocetes have a high level of uncertainty. The unavailability of a correction factor for g(0)<1, and the reduced visibility below the aircraft further reduced accuracy and increased the inherent underestimation in the data. The most abundant species according to distance sampling estimates were spotted dolphins, pilot whales, false killer whales and spinner dolphins. A natural factor shaping the ecology of odontocete populations is predation pressure both by other odontocetes and, more frequently, by sharks. An account of predation by a tiger shark on a spotted dolphin near Penguin Banks is used as an example of the potential mechanisms of predation by sharks on odontocetes.
Resumo:
Distribution and prevalence of the phoretic barnacle Xenobalanus on cetacean species are reported for 22 cetaceans in the eastern tropical Pacific Ocean (21 million km2). Four cetacean species are newly reported hosts for Xenobalanus: Bryde’s whale (Balaenoptera edeni), long-beaked common dolphin (Delphinus capensis), humpback whale (Megaptera novaeangliae), and spinner dolphin (Stenella longirostris). Sightings of Xenobalanus in pelagic waters are reported for the first time, and concentrations were located within three productive zones: near the Baja California peninsula, the Costa Rica Dome and waters extending west along the 10°N Thermocline Ridge, and near Peru and the Galapagos Archipelago. Greatest prevalence was observed on blue whales (Balaenoptera musculus) indicating that slow swim speeds are not necessary for effective barnacle settlement. Overall, prevalence and prevalence per sighting were generally lower than previously reported. The number of barnacles present on an individual whale was greatest for killer whales, indicating that Xenobalanus larvae may be patchily distributed. The broad geographic distribution and large number of cetacean hosts, indicate an extremely cosmopolitan distribution. A better understanding of the biology of Xenobalanus is needed before this species can be used as a biological tag.