556 resultados para Karyotype
Resumo:
BACKGROUND: The increasing number of assembled mammalian genomes makes it possible to compare genome organisation across mammalian lineages and reconstruct chromosomes of the ancestral marsupial and therian (marsupial and eutherian) mammals. However, the reconstruction of ancestral genomes requires genome assemblies to be anchored to chromosomes. The recently sequenced tammar wallaby (Macropus eugenii) genome was assembled into over 300,000 contigs. We previously devised an efficient strategy for mapping large evolutionarily conserved blocks in non-model mammals, and applied this to determine the arrangement of conserved blocks on all wallaby chromosomes, thereby permitting comparative maps to be constructed and resolve the long debated issue between a 2n=14 and 2n=22 ancestral marsupial karyotype. RESULTS: We identified large blocks of genes conserved between human and opossum, and mapped genes corresponding to the ends of these blocks by fluorescence in situ hybridization (FISH). A total of 242 genes was assigned to wallaby chromosomes in the present study, bringing the total number of genes mapped to 554 and making it the most densely cytogenetically mapped marsupial genome. We used these gene assignments to construct comparative maps between wallaby and opossum, which uncovered many intrachromosomal rearrangements, particularly for genes found on wallaby chromosomes X and 3. Expanding comparisons to include chicken and human permitted the putative ancestral marsupial (2n=14) and therian mammal (2n=19) karyotypes to be reconstructed. CONCLUSIONS: Our physical mapping data for the tammar wallaby has uncovered the events shaping marsupial genomes and enabled us to predict the ancestral marsupial karyotype, supporting a 2n=14 ancestor. Futhermore, our predicted therian ancestral karyotype has helped to understand the evolution of the ancestral eutherian genome.
Resumo:
The queenless ponerine ant Diacamma ceylonense and a population of Diacamma from the Nilgiri hills which we refer to as `nilgiri', exhibit interesting similarities as well as dissimilarities. Molecular phylogenetic study of these morphologically almost similar taxa has shown that D ceylonense is closely related to `nilgiri' and indicates that `nilgiri' is a recent diversion in the Diacamma phylogenetic tree. However, there is a striking behavioural difference in the way reproductive monopoly is maintained by the respective gamergates (mated egg laying workers), and there is evidence that they are genetically differentiated, suggesting a lack of gene flow To develop a better understanding of the mechanism involved in speciation of Diacamma, we have analysed karyotypes of D. ceylonense and `nilgiri' In both, we found surprising inter-individual and intra-individual karyotypic mosaicism. The observed numerical variability, both at intra-individual and inter-individual levels, does not appear to have hampered the sustainability of the chromosomal diversity in each population under study Since the related D. indicum, displays no such intra-individual or inter-Individual variability whatsoever under identical experimental conditions, these results are unlikely to he artifacts. Although no known mechanisms can account for the observed karyotypic variability of this nature, we believe that the present findings on the ants under study would provide opportunities for exciting new discoveries concerning the origin, maintenance and significance of intra-individual and inter-individual karyotypic mosaicism.
Resumo:
The black muntjac (Muntiacus crinifrons) has an unusual karyotype of 2n = 8 in females and 2n = 9 in males. We have studied the evolution of this karyotype by hybridising chromosome-specific paints derived from flow-sorted chromosomes of the Chinese muntjac (M. reevesi, 2n = 46) to chromosomes of the black muntjac. The hybridisation pattern allowed us to infer chromosomal homologies between these two species. Tandem and centromeric fusions, reciprocal translocations, and insertions are involved in the reduction of the diploid number from 2n = 46 to 2n = 8, 9. The painting patterns further show complex chromosomal rearrangements in the male black muntjac which involve more than half the karyotype, including both sex chromosomes. Since early meiosis is reported to be normal without any visible inversion loops of the synaptonemal complex, the observed chromosomal rearrangements would lead to heterosynapsis and, therefore, leave a large fraction of the male black muntjac karyotype balanced between the two sexes.
Resumo:
The Afrotheria, a supraordinal grouping of mammals whose radiation is rooted in Africa, is strongly supported by DNA sequence data but not by their disparate anatomical features. We have used flow-sorted human, aardvark, and African elephant chromosome painting probes and applied reciprocal painting schemes to representatives of two of the Afrotherian orders, the Tubulidentata (aardvark) and Proboscidea (elephants), in an attempt to shed additional light on the evolutionary affinities of this enigmatic group of mammals. Although we have not yet found any unique cytogenetic signatures that support the monophyly of the Afrotheria, embedded within the aardvark genome we find the strongest evidence yet of a mammalian ancestral karyotype comprising 2n = 44. This karyotype includes nine chromosomes that show complete conserved synteny to those of man, six that show conservation as single chromosome arms or blocks in the human karyotype but that occur on two different chromosomes in the ancestor, and seven neighbor-joining combinations (i.e., the synteny is maintained in the majority of species of the orders studied so far, but which corresponds to two chromosomes in humans). The comparative chromosome maps presented between human and these Afrotherian species provide further insight into mammalian genome organization and comparative genomic data for the Afrotheria, one of the four major evolutionary clades postulated for the Eutheria.
Resumo:
We report on the hybridization of mouse chromosomal paints to Apodemus sylvaticus, the long-tailed field mouse. The mouse paints detected 38 conserved segments in the Apodemus karyotype. Together with the species reported here there are now six species of rodents mapped with Mus musculus painting probes. A parsimony analysis indicated that the syntenies of nine M. musculus chromosomes were most likely already formed in the muroid ancestor: 3, 4, 7, 9, 14, 18, 19, X and Y. The widespread occurrence of syntenic segment associations of mouse chromosomes 1/17, 2/13, 7/19, 10/17, 11/16, 12/17 and 13/15 suggests that these associations were ancestral syntenies for muroid rodents. The muroid ancestral karyotype probably had a diploid number of about 2n = 54. It would be desirable to have a richer phylogenetic array of species before any final conclusions are drawn about the Muridae ancestral karyotype. The ancestral karyotype presented here should be considered as a working hypothesis. Copyright (C) 2004 S. Karger AG, Basel.
Resumo:
The Vespertilionidae is the largest family in the order Chiroptera and has a worldwide distribution in the temperate and tropical regions. In order to further clarify the karyotype relationships at the lower taxonomic level in Vespertilionidae, genome-wid
Resumo:
We have investigated the karyotype relationships of two oriental voles, i.e. the Yulong vole (Eothenomys proditor, 2n = 32) and the large oriental vole (Eothenomys miletus, 2n = 56) as well as the Clarke's vole (Microtus clarkei, 2n = 52), by a combined a
Resumo:
To better understand the evolution of genome organization of eutherian mammals, comparative maps based on chromosome painting have been constructed between human and representative species of three eutherian orders: Xenarthra, Pholidota, and Eulipotyphla,
Resumo:
Multidirectional chromosome painting with probes derived from flow-sorted chromosomes of humans (Homo sapiens, HSA, 2n = 46) and galagos (Galago moholi, GMO, 2n = 38) allowed us to map evolutionarily conserved chromosomal segments among humans, galagos, a
Resumo:
Rhinolophus (Rhinolophidae) is the second most speciose genus in Chiroptera and has extensively diversified diploid chromosome numbers (from 2n=28 to 62). In spite of many attempts to explore the karyotypic evolution of this genus, most studies have been
Resumo:
The Chinese pangolin (Manis pentadactyla), a representative species of the order Pholidota, has been enlisted in the mammalian whole-genome sequencing project mainly because of its phylogenetic importance. Previous studies showed that the diploid number o
Resumo:
观察了新近发现于我国云南的果蝇属暗果蝇种组( Drosophila obscura species group ) 种类 D1luguensis 、D1 dianensis 和D1limingi 的有丝分裂中期核型, 并将3 个种的核型与各自的近缘种类进行了比较。 D1luguensis 具2n = 12 条染色体, 包括3 对中央着丝粒(V 形) 染色体、2 对近端着丝粒(棒状) 染色体以及1 对微小(点状) 染色体。其中X 和Y染色体均为中央着丝粒染色体。D1 dianensis 和D1limingi 具2n = 10 条染 色体, 包括1 对大的V 形常染色体, 1 对小的V 形常染色体, 2 对J 形(亚中着丝粒型) 常染色体和1 对点状染 色体。其中X 染色体为J 形, Y染色体为短棒状。基于核型比较的结果以及D1sinobscura 亚组地理分布的资料, 结合种间系统发育关系研究结果, 认为D1 luguensis 可能保留了该亚组祖先种类的核型。D1sinobscura 的核型(2n = 12 : 2V , 1J , 2R , 1D) 可能由一个pre2“sinobscura2hubeiensis”谱系的一个分支通过臂间倒位演化而来, 而D1 hubeiensis 的核型(2n = 10 : 4V , 1D) 可能由该谱系的另一分支通过着丝粒融合(2 对近端着丝粒常染色 体的融合) 而形成。推测在D1 dianensis 和近缘欧洲种D1subsilvestris (2n = 12 : 3V , 2R , 1D) 间、D1limingi 和 东亚近缘种D1tsukubaensis (2n = 12 : 3V , 2R , 1D) 间的物种分化过程中, 可能有相似的染色体变异类型发生。
Resumo:
Fea's tree rat (Chiromyscus chiropus) is a very rare species which there are only a few specimens in the world. The chromosomes of two male specimens, collected from Xishuanbanna, Yunnan, are analysed by several banding technique (G-, C-bands, as well as Ag-staining). The diploid chromosome number is 22, and autosomes comprise 5 pairs of metacentrics, 2 pairs of subacrocentrics, and 3 pairs of acrocentrics. The X chromosome is a acrocentric, and Y is a micro-chromosome, almost a point, which could be a marker chromosome of the species and the genus. The centromeric C-bands are very faint, and C-bands of Nos. 1, 2, 9 and Y chromosome are negative. Only one pair Ag-NORs was found on No. 10 in the silver-stained karyotype. The relationship between morphologic and chromosomal features was discussed, and C-banded karyotype evolutionary trend has also been discussed. Moreover, the conventional karyotype of Niviventer confucianus was described.
Resumo:
The Chinese long-tailed mole (Scaptonyx fusicaudus) closely resembles American (Neurotrichus gibbsii) and Japanese (Dymecodon pilirostris and Urotrichus talpoides) shrew moles in size, appearance, and ecological habits, yet it has traditionally been classified either together with (viz subfamily Urotrichinae) or separately (tribe Scaptonychini) from the latter genera (tribe Urotrichini sensu lato). We explored the merit of these competing hypotheses by comparing the differentially stained karyotypes of S.fusicaudus and N. gibbsii with those previously reported for both Japanese taxa. With few exceptions, diploid chromosome number (2n = 34), fundamental autosomal number (FNa = 64), relative size, and G-banding pattern of S. fusicaudus were indistinguishable from those of D. pilirostris and U. talpoides. In fact, only chromosome 15 differed significantly between these species, being acrocentric in D. pilirostris, subtelocentric in U. talpoides, and metacentric in S. fusicaudus. This striking similarity is difficult to envisage except in light of a shared common ancestry, and is indicative of an exceptionally low rate of chromosomal evolution among these genera. Conversely, the karyotype of N. gibbsii deviates markedly in diploid chromosome and fundamental autosomal number (2n = 38 and FNa = 72, respectively), morphology, and G-banding pattern from those of Scaptonyx and the Japanese shrew moles. These differences cannot be explained by simple chromosomal rearrangements, and Suggest that rapid chromosomal reorganization Occurred ill the karyotype evolution of this species, possibly due to founder or bottleneck events.